Transgender Women Athletes and Elite Sport: A Scientific Review
Table of Contents

Executive Summary .. 1
Methods .. 3
Key Biomedical Findings .. 4
Key Sociocultural Findings .. 6
Conclusion ... 9

Introduction ... 11
Methods .. 12
The Structure of This Report .. 13

Biological Considerations .. 15
Sedentary Adults Versus Elite Athletes ... 17
Population-Level Comparison Groups ... 18
Erroneous Information and Flawed Measurement Techniques ... 21
Testosterone Effects on the Body .. 22
Effects of Testosterone Suppression for Trans Women .. 23
Evidence of Other Biological Markers ... 27

Sociocultural Context and Framing of Trans Women’s Sport Participation .. 31
History of Gender Categorization in Elite Sport .. 32
Continuing a Long History of Exclusion: The Women’s Category of Sport .. 34
Social Factors in Keeping Women’s Sport Inferior to Men’s ... 35
Discrimination and Violence Against Trans Women .. 36
Myths About Trans Women Circulated in Sport .. 37
Experiences of Systematic Discrimination in Sport .. 38
Knowledge Production and Impact ... 38
Approaches to Balancing Biological and Sociological Considerations .. 39

Conclusion .. 40

Bibliography ... 43

Appendix A: Detailed Tables of Reviewed Academic and Grey Literature 53
Academic Literature ... 53
Grey Literature .. 79

Appendix B: Scoping Review Yield .. 83

Appendix C: List of Some Canadian Organizations Who Have Trans Inclusion Policies at Competitive/Elite Levels .. 84
Executive Summary

Transgender Women Athletes and Elite Sport: A Scientific Review is an in-depth review of scientific literature on transgender athlete participation in competitive sport. The inclusion criteria for this report were research articles published in the English language between 2011 and 2021 inclusive. Only peer-reviewed articles or syntheses of academic literature (e.g., meta-analyses) in reputable academic journals were included. Grey literature, or non-academic literature, was included if it provided a summary of empirical data or if it described rules currently in place worldwide to include/exclude trans athletes. The resulting report is divided into two sections reflecting the primary perspectives by which the question of trans inclusion has been addressed - one that encompasses biomedical studies and a second that encompasses sociocultural studies. While there are questions of inclusion for non-binary and intersex athletes, this report focused on the population of trans women athletes in the context of elite sport.

The biomedical perspective views the physiology of trans women’s bodies as the source of perceived unfairness, with medicalized interventions (such as estrogen supplementation and testosterone suppression) as the resolution. More specifically, this perspective holds that sexual dimorphism between those assigned male at birth (AMAB) and those assigned female at birth (AFAB) is the reason for athletic differences. Testosterone measures and boundaries are typically chosen as defining characteristics of manhood and womanhood in the context of sport and are used as the predominant marker to predict and level sex-related athletic advantage and the means for inclusion criteria.

The research findings in the biomedical area are inconclusive. Studies which make conclusions on pre- and post-hormone replacement therapy (HRT) advantage held by trans women athletes have used either cis men or sedentary trans women as proxies for elite trans women athletes. These group references are not only inappropriate for the context but produce conclusions that cannot be applied to elite trans women athletes. Further, there is little scientific understanding about the attributes or properties of HRT, namely testosterone suppression and estrogen supplementation, on the physiology and athletic ability of trans women athletes. This ignores the potential for estrogen supplementation to reduce Lean Body Mass (LBM), and for testosterone suppression to produce holistic health disadvantages.
The second perspective is a sociocultural one. Researchers in the sociocultural field of study argue that social factors contribute to performance advantages to a far greater extent than does testosterone and that assessing testosterone levels is another way to perpetuate the long history of policing women’s bodies in sport. Researchers highlight the many social factors that contribute to differences in athletic performance, including, for example: discriminations, disparate resource allocations, inequities, and violence against women in sport in the forms of sexism and sexual violence in sport contexts, arbitrary differences in rules and equipment between men’s and women’s sport, as well as histories of barring women from certain sports. This body of work also highlights the foundational histories of anti-Blackness, anti-Global Southness, and misogyny which maintain inequities in sport. Arguments are made that the use of testosterone to exclude trans women athletes represents another phase in the long history of policing women’s bodies in sport. Once women were allowed into competitive sport in the early 20th century, those whose athletic ability was on par with their male counterparts, or whose physique was too manly, were disqualified from competition as deviants of the gender order. Through the history of women’s sport, female athletes have been exposed to intrusive gender verification processes including medical inspection of external genitalia and chromosome testing that produced many false positives and had catastrophic impacts on athletes’ careers. The current climate is one that focuses on testosterone levels of those athletes whose gender is deemed to be ‘suspicious.’

In the context of sport policy development, biomedical and physiological data have to-date been privileged over other aspects such as social factors. Many policies cite biomedical studies to explain their conditions of inclusion, or their exclusion.
Methods

The findings of this report result from a thorough literature scan in May/June 2021. Academic (i.e., peer-reviewed primary or synthesized secondary research journal articles) and grey (not peer reviewed, reports, policy documents, do not follow a scientific process) literature were included.

Inclusion Criteria:

- Published between 2011 and 2021;
- English language;
- Primary research or syntheses (e.g., meta-analyses, reviews);
- Grey literature was included if it was a final evaluation or report on empirical data;
- Grey literature was included if it was about rules currently in place worldwide for the inclusion/exclusion of trans women in high-performance sport.

Excluded: discussion articles, opinion pieces, or commentaries not presenting empirical or theoretical research.
Key Biomedical Findings

1. Biological data are severely limited, and often methodologically flawed.
 - Most studies do not adequately adjust for factors such as height or lean body mass;
 - Almost no studies examining the effects of testosterone suppression on trans women do so among trained athletes;
 - Most studies on the effects of testosterone on sport performance involve examination of individuals who use performance-enhancing drugs.

2. There is limited evidence regarding the impact of testosterone suppression (through, for example, gender-affirming hormone therapy or surgical gonad removal) on transgender women athletes’ performance.
 - Most of these studies had small sample sizes, imperfect measurement techniques, poor reference group comparisons, and studied a sedentary/non-athletic/untrained sample population;
 - Some significant studies used misleading data sources and actively ignored contradictory evidence.
Available evidence indicates trans women who have undergone testosterone suppression have no clear biological advantages over cis women in elite sport.

- The higher levels of red blood cell count experienced by cis men is removed within the first four months of testosterone suppression;
- There is no basis for athletic advantage conferred by bone size or density, other than advantages achieved through height. Elite athletes tend to have higher than average height across genders, and above-average height is not currently classified as an athletic advantage requiring regulation;
- On average, trans women who are pre-testosterone suppression still have lower Lean Body Mass (LBM), Cross Section Area (CSA), and strength than cis males. This indicates that the performance benefit experienced by these individuals cannot be generalized by examining cis male athletes;
- Non-athletic trans women experience significant reduction in LBM, CSA, and strength loss within 12 months of hormonal suppression. It is important to note that this 12-month threshold is arbitrarily defined, and no significant studies examine the rate of LBM, CSA or strength reduction over time;
- When adjusting for height and fat mass, LBM, CSA, and strength after 12 months of testosterone suppression, trans women still retained statistically higher levels than sedentary cis women. However, this difference is well within the normal distribution of LBM, CSA, and strength for cis women (Jassen et al., 2000);
- LBM, CSA, and strength loss continues for trans women after the 12-month initial testosterone suppression;
- The limited available evidence examining the effect of testosterone suppression as it directly affects trans women’s athletic performance showed no athletic advantage exists after one year of testosterone suppression (Harper, 2015; Roberts et al., 2020; Harper, 2020);
- Post gonad removal, many trans women experience testosterone levels far below that of pre-menopausal cis women.
Key Sociocultural Findings

1. **Biomedical studies are overvalued in sports policies in comparison to social sciences studies.**

 - The literature on trans sport policies, their implementation, people who write them and apply them, consequences for athletes, and the debates they frame is constitutive of the social hierarchy of knowledge, within which some sciences are discredited to the benefit of others;
 - Excluding certain types of knowledge from the restricted definition of ‘scientific’ makes it possible for sport governing bodies to obscure the power relations at play in the creation, maintenance, and legitimization of regulations;
 - There are troubling links between some researchers, sport organizations, and third organizations with anti-trans agenda;
 - Some sport organizations use science strategically, drawing solely and uncritically on data which appears to support their claims;
 - Only certain biomedical factors are policed under a mandate of ‘fairness’ in elite sport, despite strong evidence that financial material resources (such as access to infrastructure and equipment, nutrition, time to train, higher salaries) are associated with advantage in sport.

2. **Policies that impact trans women’s participation in elite sport are the continuation of a long history of exclusion of women from competitive sport – an exclusion that resulted in the introduction of a ‘women’s’ category of sport in the first place.**

 - Since the early 20th century, elite sport policies worked to pathologize and control women’s bodies and enforce dimorphic sex. There is, however, a significant overlap in all sexual characteristics. ‘Male’ and ‘female’ are not mutually exclusive categories and should not be treated as such;
• Many social factors continue to keep women’s sport less valued than men’s: fewer resources, lack of access to sport spaces or equipment, fewer coaches and teams, sexist discrimination, having to quit sports due to sexual violence, lesbophobia, classism, racism and/or transphobia;
• There are examples of competitive sport events that have changed sporting structures or put restrictions on particular athletes as women began to excel;
• The literature largely ignores areas where cis women have an athletic advantage over cis men (long-distance swimming, for example), as well as the ways in which trans women’s participation in elite sport elevates sport for all women.

3. Many trans “inclusion” sport policies use arbitrary bounds that are not evidence based.

• Elite sport federations often apply none, one, two, three, or more of the following criteria based mostly on their own perspectives / ideologies: gender declaration (gender marker, letter, or just during registration), stable gender identification of two years or four years, hormonal level (not specified, 5 nmol / L or 10 nmol / L), request for Therapeutic Use Exemption (TUE), physical and morphological criteria, medical file or medical appointment;
• Many sport organizations circulate myths about trans women that are transphobic, harmful, and violent. For example, that trans women will overwhelm women’s sport, when trans women are in fact under-represented in sport and especially elite sport; or that trans women are cis men in women’s clothes, a dangerous misunderstanding of trans women’s identities and experiences directly linked to trans women’s decreased safety especially in such highly gendered spaces as sport.
Cissexism, transphobia, transmisogyny and overlapping systems of oppression need to be recognized and addressed for trans women to participate in elite sport.

- Despite unavailability of the exact prevalence of trans women in the population, we can reliably conclude trans women are systematically underrepresented in elite athletics both in terms of participation and results;
- On a population level, trans women experience living conditions which are the result of downward social mobility and discrimination, including restricted access to and/or experiences of discrimination in vital spaces (i.e., housing, health care, work, public space including sports facilities);
- In qualitative studies, trans women have reported facing significant barriers to returning to sport after they transition;
- Trans women are not a monolith. Racism, classism, ableism, and overlapping systems of oppression must be addressed for trans women to be able to participate in elite sport. Trans women’s diversity is also reflected in their transition journeys – diverse incomes, access, and desires affect in what medical gender affirmation processes a trans woman might participate and at what stage in her life course.
Conclusion

There is no firm basis available in evidence to indicate that trans women have a consistent and measurable overall performance benefit after 12 months of testosterone suppression. While an advantage in terms of Lean Body Mass (LBM), Cross Section Area (CSA) and strength may persist statistically after 12 months, there is no evidence that this translates to any performance advantage as compared to elite cis-women athletes of similar size and height. This is contrasted with other changes, such as hemoglobin (HG), which normalize within the cis women range within four months of starting testosterone suppression. For pre-suppression trans women it is currently unknown when during the first 12 months of suppression that any advantage may persist. The duration of any such advantage is likely highly dependent on the individual’s pre-suppression LBM which, in turn varies, greatly and is highly impacted by societal factors and individual circumstance.

Any policy developed should carefully consider the current lack of participation of trans athletes (in many sport organizations there is a complete absence or outright exclusion) and balance the value of fairness with inclusion. Policies should be crafted in ways which clarify and highlight administrators’ duty to prevent and actively attend to barriers, carefully considering the administration of any such policy in ways which do not further discourage participation through the creation of unnecessary barriers, or unnecessarily infringe on the individual’s privacy (including their right to not openly identify as transgender). Additionally, these individuals should not be excluded during any non-competition periods from participating with a team through training, exhibition matches or social activities.
Further research is needed to ensure a foundation in sound evidence, a foundation which does not currently exist. Specifically, additional research is needed with sample populations of trained trans women and trained cis women as a comparison group, as current studies tend to focus on sedentary populations. These studies ought to include large populations, make comparisons with equivalent population groups (i.e., adjust for height and weight), and avoid using measures which are empirically proven to be unreliable outside of population-level analysis (i.e., handgrip strength).

Political, historical, and sociocultural contexts must also be intentionally considered in implementation, the framing of ‘trans inclusion’ policies, defining ‘fairness’ in sport, and participation in the hierarchy of knowledge and scientific processes.
Introduction

The Canadian Centre for Ethics in Sport (CCES) commissioned this literature review with a mandate to review the scientific and grey literature regarding trans women athletes’ participation in elite or otherwise high-performance sport (herein shortened to ‘elite sport’), with a special focus on the state of scientific literature around the science of testosterone and its impact on sport performance.

There is a triple bind for this research project: part of the challenge of this review is in responding to questions about the relationship between testosterone levels and athletic advantage while also accounting for scientific findings that risk reducing the question of trans women’s inclusion in elite sport to one of (a) biology and (b) solely testosterone, while obscuring the highly relevant socio-historic-cultural contexts that render scientific and evidence-sharing processes vulnerable. While the current mandate understandably engages with discourse on trans women’s participation in elite sport, this report features findings relating to both the mandated research question about testosterone and the assumptions layered in the discourses and framing of the mandated research question itself.

It is also important to emphasize the limits to the scope of this report before engaging with the findings: the findings of the current review should not be applied on community, recreational, school, or levels/contexts of sport other than elite, where the evidence overwhelmingly supports the inclusion of cis and trans athletes of all genders. Nor does it review evidence regarding the full range of trans identities (i.e., transmasculine athletes, non-binary trans athletes, or the full range of transfeminine athletes) or athletes who transition at different stages of their life course (e.g., trans youth). The findings of this review are specific to trans women’s participation in elite, high-performance sport and are not necessarily applicable to these alternative contexts or populations. For more specific research questions regarding non-elite contexts and the full range of trans identities in sport, different evidence ought to be pursued.
Methods

The findings of this report result from an analysis and synthesis of the existing literature. Academic (i.e., peer-reviewed primary or synthesized secondary research journal articles, scholarly book chapters, other materials that follow conventional scientific and peer review processes) and grey (not peer reviewed, reports, policy documents, do not follow a scientific process) literature were included.

Researchers studying trans identities and sport in Canada and internationally were consulted to build a list of key search terms and literature. Articles were also hand-searched to identify further relevant materials. This process took place in May 2021.

In order to be included, materials had to fit the following criteria:

- Published between 2011 and 2021;
- English language;
- Primary research or syntheses (e.g., meta-analyses, reviews);
- Grey literature was included if it was a final evaluation or report on empirical data;
- Grey literature was included if it was about rules actually in place worldwide for the inclusion/exclusion of trans women in high-performance sport.

Discussion articles, opinion pieces, or commentaries not presenting empirical or theoretical research were excluded.

Approximately 50 academic articles, books, and grey literature materials were identified. The researchers entered articles they reviewed into tables (see Appendix A). In addition to this initial yield, researchers conducted searches for further academic articles with regards to particular issues, claims, or arguments through consultations with leading scholars, previous work, and library searches. These articles are included in analysis and referenced, but not included on the expanded review tables in Appendix A.
At the same time, a university librarian conducted a systematic search in June 2021 (see Appendix B for summary of yield and databases). A scoping review process was unable to be fully completed due to time constraints, however, the authors intend to publish the full scoping review results in future. The authors reviewed abstracts of the biomedical yield of the systematic review (n=360) to ensure no major biomedical articles were missed. (In fact, the systematic search was refined and benefitted from the articles identified through the present search methodology.)

The Structure of This Report: Biological and Sociocultural Approaches to Knowledge Production

What is apparent through public discourse and supported through analysis of the reviewed research materials is that there are competing ways of conceptualizing ("epistemologies") trans women’s participation in elite sport.

This report is therefore organized by two main conceptualizations. For the purposes of this report, they have been broadly characterized by the way ‘fairness’ in sport is understood. One conceptualization, shorthanded to a sociocultural perspective, understands ‘fairness’ in sport as a sociocultural, embodied phenomenon, wherein sport systems need to change to fully welcome the embodied diversities of humans. This conceptualization questions the control elite sport exerts over definitions of gender and the long, ongoing history of sexism, cissexism, transmisogyny, and other forms of systemic discrimination trans women athletes face. The other conceptualization, shorthanded to a biological perspective, focusses narrowly on ‘fairness’ as a practice and/or enforcement of biological parity and on testosterone in particular (though, the discourses seem to be evolving to all manner of biological phenomena, and without consensus about what form ‘biological parity’ might or should take). This biological perspective of fairness in elite sport requires trans women’s bodies to conform to yet unidentified biological measures.
These conceptualizations and the research available in each differ in reliability and impact, with elite sport often prioritizing biological framing and studies over the sociocultural. They also apply differently to different populations of trans women and transfeminine people, who are not a monolith. Because of these competing epistemologies, questions about trans women’s participation in elite sport are often reduced to the question of the impact of prior exposure to higher levels of testosterone on athletic performance. Throughout this report, however, the authors will show that there are more salient and more appropriate gaps in biological evidence to consider, and more salient sociocultural considerations towards trans women’s inclusion in elite sport. Therefore, despite the mandate of the report to speak to the up-to-date science of the impact of prior exposure to higher levels of testosterone on trans women’s athletic performance, it is important to speak to the research in each epistemology. This report offers findings from both, which are presented together, but not equated to each other.
Biological Considerations

Biological data in this area are severely limited. In fact, an illuminating place to start is to note that, “to date, there have been no prospective studies investigating the changes in athletic performance in transgender athletes after hormonal transition” (Harper et al., 2021, p. 1), and many pertinent biological questions remained unexplored. The data that do exist often come with methodological concerns, and/or are limited in their ability to generalize to elite transgender athletes. Many studies employ a false biological equivalency between the role of testosterone in doping to the role of testosterone among trans populations, including trans women. Most available studies do not include placebo controlled or blinded sample groups of trans women, cis women control groups, or even cis men control groups. Height and Lean Body Mass (LBM) are rarely adjusted for as a fair assessment would require. When adjusting for height and fat-free mass, relative differences in strength between cis men and cis women largely disappear (Harms et al., 2011) making this a critical step in conducting population level comparisons. To illustrate this, the average 5’10” cis woman carries significantly higher muscle mass than a 5’4” cis woman. As we do not currently consider height to be an eligibility criterion (no threshold exists which would limit participation in sport), significant as in many men and women’s elite sport, participants tend to be taller than population averages. Unless sporting organizations put limits on height for competition, a fair comparison would use height-adjusted cis women (i.e., comparing the muscular mass and strength of a 5’10” trans women to a 5’10” cis women). Without this comparison, the standard of fairness would be set such that trans women would be required to have lower LBM, strength, and muscle mass than cis women of equivalent height. LBM is similarly useful as a measure, as it includes the total mass of muscles, bones, ligaments, tendons, and essential fat. As skeletal mass is an approximate function of height^2 and sex, height-adjusted LBM can be used to compare total muscle mass the primary driver of performance. Similarly, these studies do not make adequate adjustments for other population-level artifacts such as participation rates (known to reduce elite-level performance levels), availability of training resources, social body image, or other sociological artifacts that affect performance. A practical implication that illustrates this effect is the shrinking of the athletic performance gap between men and women as some of these socio-culturally-driven barriers are alleviated, as seen in Figure 1 below.
The content of this report will demonstrate the irrelevance of the following finding to trans women’s inclusion in sport; none-the-less, the report might be incomplete without it: the distribution of testosterone levels among elite athletes overlaps between cis men and cis women, with different exact hormonal profiles and descriptions of the overlaps across various sports described by Sonksen et al. (2018). While some women are considered to have high testosterone in the so-called male range, there are many elite male athletes with testosterone in the so-called normal female range. Bermon et al. (2014) additionally found that testosterone levels were not predictive of sporting success, with no demonstrated higher performance impact of testosterone among cis women track athletes (excluding confirmed or suspected athletes with doping violations and athletes Bermon et al. describe as having Differences of Sexual Development (DSD)). The following sub-sections outline the available research on testosterone, methodological concerns with research on testosterone in sport, and additional biological markers employed.
As studies in this area rarely use trained athletic women as a representative group, we must also give consideration to what differences exist in sedentary adults versus elite athletes, in particular how total muscle mass (which can be approximated from LBM) increases with physical activity. To start, labour markets have significant gender divides, particularly in jobs with high physical demand where men are far more likely to hold these positions, such as construction or the military (Bureau of Labour Statistics (BLS), 2020). The Euro Barometer (2010, pp. 12) found youth (aged 15-24) participation in sport heavily favoured men (71% male, 50% female). This gap extended for heavily active youth participating in sport at least five times a week (19% male vs. 8% female). Further, there are significant differences between genders for non-sedentary adults and trained athletes due to social pressures and sports preference. Findings also establish that type of sporting activities is highly gendered, where women seek physical activities that emphasize slimness, muscle tone, and other standards of post-modern femininity (Pfister, 2011). This suggests that population level LBM, Cross Section Area (CSA), and strength are not representative of the athletic potential that cis women could achieve if these gendered social expectations did not exist. Not only do cis women have lower participation rates in physical activities which limit their muscle production, when they do participate in physical activities, they further de-emphasize the production of muscle mass by selecting roles which do not prioritize strength and muscle mass. This has been reported in dance where men tend towards mesomorphy (athletic and muscular body type) and females towards ectomorphy (thin, minimal muscle mass, low body fat; Ferrari et al., 2013). Notably, women dancers had significantly lower values for LBM, body fat percentage, and overall lower Body Mass Index (BMI) (Ferrari et al., 2013; Matthew et al., 2014). Similar differences in body compositions have been seen in elite athletes across many sports, going as far back as 1955 (Krawczyk et al., 1955). These sociological pressures result in cis women having lower LBM and strength than their biological potential would allow for.

It is important to note that participation rates also dramatically impact likely performance of elite athletes. This is due to statistical artifacts whereby the larger a study population, the more likely outliers will develop to maximally perform a task. There also were no studies that examine areas that, as a population, cis women outperform cis men. These areas include women having higher levels of endurance and quicker recovery as a result of a higher proportion of type 1 muscle fibers (Haizlip. et al., 2015), increased glycogen-sparing fat oxidation during endurance exercise (Tarnopolsky, 2008), higher myocardial perfusion, extracellular volume and myocardial perfusion stress (Nickander et al., 2020), and at a population level of untrained individuals, higher performance in balance (Torres et al., 2014). It should not be assumed that men outperform women in all elite sports; this is currently not considered in any of the research examining trans populations in elite sport.
Along with using sedentary adults as proxies for elite athletes, these studies also tend to have very small sample sizes, regularly use imperfect measurement techniques, measure sex differences that are poor proxies for performance, and use inappropriate reference group comparisons to establish their conclusions, all of which limits the applicability of the research for policymaking. More concerning, there exists significant evidence that some highly impactful articles in this area are selectively included, manipulated, or used misleading data sources to create support for their conclusions while ignoring all evidence that contradicted these conclusions. Specifically, Hilton and Lundberg (2020) have written what is best described as an argumentative essay in the form of original scientific research (see Appendix A for detailed methodological concerns).

Population-Level Comparison Groups

Research investigating the potential for athletic advantage conferred onto transgender athletes tends to be centered on relative changes to LBM, CSA, strength, and hemoglobin as a result of testosterone suppression. It is important to note that no one biological marker can be used as a proxy for the complex set of advantages and disadvantages that is attributed to individual performance. As a result, bodies (both cis and trans) must be looked at in a holistic way, and that their performance is a result of many interactive social and biological systems and not just the sum of discrete biological components. We must also examine what bias we have when examining biologic advantage, especially as it relates to transgender women. In sports, athletes are regularly praised as talented for having physical attributes which gain them significant athletic advantage compared to population averages. An example of this is Michael Phelps who is notably reported to have a longer torso, shorter legs, hyperextended joints, double jointed elbows and ankles, size 14 feet, and he produces less lactic acid than other athletes. All of these attributes create a significant performance advantage, yet his biological advantages are not considered unfair. Rather than examining individual variations of LBM, CSA, strength, and hemoglobin, we should instead examine the total impact of HRT on an athlete’s performance. In this, we should also note that outside of sports with defined weight categories, weight and height are not considered to be an unfair advantage, rather taking positions as examples of tolerable unfairness (Devine, 2018). This is despite height being highly predictive of not just lean body mass, but also in measuring maximal torque. The increased lever length attributed to skeletal frame (height) accounts for significant levels of the variation measured for both men and women (Harbo et al., 2011). It is important to note that both male and female muscle mass are the same strength when comparing equivalent cross section size or mass (Costill et al., 1976) and total mass and cross section size, both increase with height for both cis men and cis women (Forbes, 1974). When adjusting for height and weight, cis men still have higher LBM than cis women, largely as a result of being able to achieve a lower body fat percentage, a direct performance advantage due to having less non-contractile tissue to carry. It is unsafe for cis women to attempt to
achieve cis men levels of body fat (Nazem & Ackerman, 2012). Despite this, we could find no studies that examined the effect of HRT on body fat percentage or performance. This is despite the fact that a widely used part of HRT is estrogen supplementation which impacts body fat retention (Handelsman et al., 2018).

Population Differences

Many studies in this area often use cis men as a reference group to trans women. This is highly flawed, as the typical pre-medical transition woman does not exhibit a body that is comparable to that of a cis man. These flawed assumptions lead to an underreporting of the effect of testosterone suppression in individuals who were assigned male at birth due to a lower starting muscle mass pre-suppression.

Table 1 below illustrates the average height and weight of trans women participants.

Table 1 Average height and weight of trans women participants.

<table>
<thead>
<tr>
<th>Article</th>
<th>Height (cm)</th>
<th>Weight (Kg)</th>
<th>Country</th>
<th>Trans Women Participants (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wiik et al., (2019)</td>
<td>180</td>
<td>73</td>
<td>Sweden</td>
<td>11</td>
</tr>
<tr>
<td>Defrayne et al., (2018)</td>
<td>179</td>
<td>72.8</td>
<td>Netherlands and Belgium</td>
<td>239</td>
</tr>
<tr>
<td>Gava et al., (2016)</td>
<td>180</td>
<td>73.0</td>
<td>Italy</td>
<td>40</td>
</tr>
</tbody>
</table>

Table 2 Height and weight among cis men and cis women (as presented by Harper, 2020).

<table>
<thead>
<tr>
<th>Country</th>
<th>Height (cm)/Weight (Kg) (cis men)</th>
<th>Height (cm)/Weight (Kg) (cis women)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sweden</td>
<td>180/86.8</td>
<td>166/70</td>
</tr>
<tr>
<td>Netherlands</td>
<td>183/87.4</td>
<td>169/72.3</td>
</tr>
<tr>
<td>Belgium</td>
<td>181/87.8</td>
<td>165/70.0</td>
</tr>
<tr>
<td>Italy</td>
<td>177/83.6</td>
<td>166/70.0</td>
</tr>
</tbody>
</table>

Note: Reproduced from Harper (2020).
The data in Tables 1 and 2 show that pre-testosterone suppression trans women cannot be compared to cis men (while closer to cis men for height, weight is lower and seemingly closer to cis women’s). It may follow that trans women as a population have lower BMI than cis women, and therefore lower height-adjusted muscle mass than cis women. This is important to note as the majority of studies examining the effect of testosterone suppression in trans women assume that their starting muscle mass is equivalent to cis men.

This finding is also supported by cross-section studies measuring the baseline differences between pre-testosterone suppression trans women and cis men. These data clearly show that it is erroneous to assume trans women and cis men are synonymous. Therefore, in order to examine if any advantage exists, we must compare the observed reduction in LBM, CSA, and strength with height-adjusted cis women and not cis men. This is largely not done in the available literature and leads to misleading conclusions of any retained advantage. An equivalent facetious argument using height would be that the average child grows 70 cm by the age of 18 but the average adolescent only grows 30 cm at the age of 18, therefore children who have turned 18 have an unfair advantage due to a 40 cm height gap. Table 3 below shows the relative change between pre-suppression transwomen and post-suppression transwomen, both of whom have lower LBM, CSA, and strength than cis men.

Table 3 Relative changes between pre- and post-suppression trans women among various markers.

<table>
<thead>
<tr>
<th>Category</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>LBM</td>
<td>6.4% (Van Caenegem et al., 2015), 17.2% (Lapauw et al., 2008) 8.0% (Haraldsen et al., 2007)</td>
</tr>
<tr>
<td>CSA</td>
<td>6.0% (Van Caenegem et al., 2015), 11.4% (Van Caenegem et al., 2015)</td>
</tr>
<tr>
<td>Handgrip strength</td>
<td>14.3% (Van Caenegem et al., 2015)</td>
</tr>
</tbody>
</table>

Neither of these options provides a robust framework by which trans athletes’ performances should be assessed. Without making appropriate adjustments in height and LBM, and without consideration of other performance advantages or disadvantages, the standard set for fairness would require trans women to underperform or be at a demonstratable disadvantage compared to cis women. There must therefore be critical examination of the few existing studies that examine the direct impact on trans athletes’ performances as a result of testosterone suppression through either HRT or surgical gonad removal.
Erroneous Information and Flawed Measurement Techniques

Several studies allude to performance advantages which are derived from testosterone exposure during key periods of development (i.e., puberty). However, while these advantages - such as q-angle, lung size and bone density - are commonly thought to confer a performance advantage, there is no support in the literature that these factors confer any such advantage. The q-angle - defined as the angle between a line drawn from the anterior superior iliac spine (ASIS) to the center of the patella and a second line from the patella to the tibial tubercle - has often been assumed to play a role in generating power during acceleration and efficiency of a running stride. However, under investigation there appears to be no performance advantage conferred in sport as a result of q-angle, further increased risk of injury attributed to q-angle can be entirely removed with training (Bruton et al., 2013; Kernozek & Greer, 1993; Thomas et al., 1998; Nguyen et al., 2009; Sigward & Powers, 2006; Hertel & Braham, 2004). Arguments based on bone density derive from systematically racist arguments first introduced in the 1920’s while attempting to ignore this background, black women and women of color have higher bone density than white men (Leslie, 2012) removing any potential for bone density to be considered a factor for unfairness in trans athletes. Lung size is also commonly attributed as performance enhancing; however, it is never adjusted for height (taller individuals naturally have larger lungs on average) nor is it a good predictor of sport performance (Hopkins et al., 2018; Degens et al., 2019; Åstrand et al., 1964). To clarify, on the topic of Maximum Breathing Capacity (MBC), “MBC is not likely to be an adequate physiological measure of the competence of the respiratory system in strenuous work and should be regarded rather as the biomechanical limit of the possibilities of the ventilatory apparatus,” (Breslav et al., 2000, pp. 485) and, “After differences in lung volume are accounted for there is no intrinsic sex difference in the DLco [diffusion capacity], Vc [pulmonary capillary blood volume, or Dm [membrane diffusing capacity] response to exercise ... together, these data suggest that the pulmonary capillary blood volume response is proportional to lung size and is adequate to meet individual oxygen demand during exercise,” (Bouwsema et al., 2017). As such, lung size should not be used as a proxy for an individual’s endurance capacity.

Beyond using misleading physiological traits, studies often use measurement techniques with poor accuracy and generalizability. Handgrip strength, for example, is often used for broad population level analysis, however handgrip strength should not be used as a proxy for overall muscle strength (Yeung et al., 2018). In fact, due to ease of gripping the testing device, grip strength is largely correlated with hand size and therefore height (Alahmari et al., 2019). Additionally, some studies do not include cis female control groups, which leads to poor accuracy and confounding attributions. One example of this can be found in Wiik et al., (2020), in which the authors’ results ignore that cis women are also able to maintain or increase muscle mass while undergoing intense training cycles and that untrained females have a high capacity to build muscle mass, particularly upper body strength (Roberts et al., 2020). Without a cis women comparison group, the results are misleading. Moreover, many strength studies ignore
that untrained individuals can quickly gain strength independent of muscle gain due to neural mechanisms (Chilibeck et al., 1997). This ability to quickly gain muscle is in addition to higher performance on strength tests that can be attributed to comfort and familiarity with testing devices after repeated use. As such, sedentary adults should not be used as a proxy for elite athletes when determining the ability to gain or retain muscle mass. Additional studies need to be made which appropriately control for these factors. This requires studies to use appropriate control groups of height-adjusted elite athletes and measure muscle and strength from appropriate tests which can be used as a proxy for overall strength and adequately control for artifacts such as training familiarity and neural adaptations which give inaccurate measurement results.

Testosterone Effects on the Body

The general effects of testosterone on the body presented below must be further explored and ought to be taken as guideposts rather than definitive. Many methodologies in these research projects relied on treating serum testosterone levels and doping as similar functions, but current science demonstrates that doping is not the same as serum testosterone levels.

Table 4 below summarizes the evidence on the generalized effects of testosterone on the body.

Table 4 Summary of evidence of the generalized effects of testosterone on the body.

<table>
<thead>
<tr>
<th>Effect</th>
<th>Supporting Citation(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increases muscle fibre diameter by increasing muscle protein synthesis</td>
<td>Griggs et al., 1989</td>
</tr>
<tr>
<td>Increases cardiac muscle</td>
<td>Thum & Borlak, 2002</td>
</tr>
<tr>
<td>Induces red blood cell production</td>
<td>Bachman et al., 2014</td>
</tr>
<tr>
<td>Increases height during puberty</td>
<td>Bourguignon et al., 1986</td>
</tr>
<tr>
<td>Bone formation is affected</td>
<td>Tuck & Francis, 2009</td>
</tr>
</tbody>
</table>

It is important to note that for some of these traits there is little or no research evidence that effectively and directly links them to athletic performance, and some of these references are notably older. Many of these claims are a result of directly comparing male and female sports performance, which has many notable flaws (as previously discussed). Many of the claims about the benefits of testosterone in athletics have gone unchecked since they are often taken for granted in biological research papers and do not include citations. For the sake of this report and providing a review of the most up-to-date evidence on testosterone, we entertained the presumptions - which many researchers have taken for granted without sufficient evidence - that there are links to performance to explore, despite the ‘taken-for-granted,’ unsubstantiated, and refuted natures of this claim.
Effects of Testosterone Suppression for Trans Women

As we are attempting to examine the maximum potential of the human body for elite athletes, we must examine the extreme and untested case: an individual whose body is indistinguishable from a trained, elite male athlete prior to testosterone suppression/estradiol supplementation. With a lack of trained, elite male athletes undergoing HRT, we must hypothesize what performance effects this individual would undergo as a result of HRT. While this is the case scenario presupposed within nearly every trans-focussed sport policy, no cases of this exist, to the best of our knowledge. Rather, most athletically untrained trans women have lower muscular mass and strength than elite female athletes. In order to hypothesize the performance effects of HRT on a trained, elite male athlete, we must look at the available evidence and consider whether the research as it currently stands (without a population of, or even a single, trained elite male athlete undergoing HRT) can be used to make effective comparisons through:

2. Including body composition (fat-free mass %) affected by testosterone.
3. Using height-matched control groups.
4. Comparing participation rates between populations.

Metrics Used to Predict Elite Sport Performance:

- Testosterone Level
- Muscle Mass
- Red Blood Cell Count
- Body Fat
- Strength
- Bone Density

Athletes should be looked at holistically, that they are a sum of all their advantages and disadvantages which result in performance.

Additional possible metrics of performance could include direct LBM measurement through a dexta MRI scan.
It is important to note that no one metric can be used to predict performance. Further, the metrics reported do not account for the population-level differences that exist between trans women and cis men. Therefore, we must look at the absolute height adjusted values and compare these values with values produced by cis women. In this, athletes should be looked at holistically, that they are a sum of all their advantages and disadvantages which results in performance. Existing studies often do not continuously measure muscle mass during the 12 months of testosterone suppression, nor do they continue after the 12 months of suppression to see if any persisting trend exists. This is significant for policy creation, as a 12-month testosterone suppression requirement may be excessive to achieve practical performance equivalence. This also holds true for studies examining hemoglobin and red blood cell count where levels normalize within 4 months (See Table 5). As a result, it is impossible to say exactly when any potential individual athletes’ performance advantage has been mitigated. It is likely that the majority of any advantage is erased prior to the 12-month arbitrary timeline. In addition, flawed conclusions are often drawn from these studies as they notably ignore any significant disadvantages that affect trans women during and after testosterone suppression. These disadvantages can include: the diuretic effects of suppressive medications, speed, endurance, or recovery as a result of reduced muscle mass while maintaining a larger body along with reduced aerobic capacity as well as sociological disadvantages. When examining the normal distribution of LBM, CSA, and strength for cis women (Jassen et al., 2000) sedentary trans women appear to be well within the normal distribution of cis women, which is suggestive that no residual effect on these traits exist once variations in height, weight, participation rates and social factors are accounted for. Additionally, it has been reported that for trans women who have undergone gonad removal, their serum testosterone levels can often be below that of pre-menopausal cis women leading to additional performance and health factors (Genel, 2016). However, the majority of studies reviewed examine the effects of testosterone suppression on non-athlete trans women and have reported decreases in hemoglobin levels, LBM, muscle CSA, and strength loss (see Tables 5 - 8). Of particular note, hemoglobin levels after testosterone suppression reach cis woman levels within 4 months (see Table 5 examining non-athletes HCT (hematocrit) or HG variance).

Table 5 Hemoglobin levels after testosterone suppression.

<table>
<thead>
<tr>
<th>Article (by date)</th>
<th>Suppression effect</th>
<th>Time Frame</th>
<th>Participants (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wiik et al., (2020)</td>
<td>10.5%</td>
<td>4 months</td>
<td>9</td>
</tr>
<tr>
<td>Wiik et al., (2020)</td>
<td>11.7%</td>
<td>12 months</td>
<td>10</td>
</tr>
<tr>
<td>Defrayne et al., (2018)</td>
<td>8.9%</td>
<td>3 months</td>
<td>239</td>
</tr>
<tr>
<td>Defrayne et al., (2018)</td>
<td>8.7%</td>
<td>6 months</td>
<td>239</td>
</tr>
<tr>
<td>Defrayne et al., (2018)</td>
<td>9.6%</td>
<td>24 months</td>
<td>239</td>
</tr>
<tr>
<td>Olson-K (2018)</td>
<td>8.3%</td>
<td>24 months</td>
<td>23</td>
</tr>
<tr>
<td>Vita (2018)</td>
<td>10.5%</td>
<td>6-30 months</td>
<td>21</td>
</tr>
<tr>
<td>Auer (2016)</td>
<td>5.5%</td>
<td>12 months</td>
<td>20</td>
</tr>
<tr>
<td>Wierchx (2014)</td>
<td>7.0%/4.6% *</td>
<td>12 months</td>
<td>52</td>
</tr>
</tbody>
</table>

*oral oestrogen vs transdermal oestrogen
Table 6 Muscle loss in non-athletes using LBM.

<table>
<thead>
<tr>
<th>Article (by date)</th>
<th>Suppression effect</th>
<th>Time Frame</th>
<th>Participants (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klaver (2018)</td>
<td>3.0%</td>
<td>12 months</td>
<td>179</td>
</tr>
<tr>
<td>Tack (2018)</td>
<td>4.7%</td>
<td>12 months</td>
<td>21</td>
</tr>
<tr>
<td>Gava et al., (2016)</td>
<td>3.5%</td>
<td>12 months</td>
<td>40</td>
</tr>
<tr>
<td>Auer (2018)</td>
<td>3.4%</td>
<td>12 months</td>
<td>45</td>
</tr>
<tr>
<td>Wierckx (2014)</td>
<td>5.4%/4.6% *</td>
<td>12 months</td>
<td>52</td>
</tr>
<tr>
<td>Van Caenegem (2014)</td>
<td>4.0%</td>
<td>12 months</td>
<td>49</td>
</tr>
<tr>
<td>Mueller (2011)</td>
<td>4.0%</td>
<td>12 months</td>
<td>84</td>
</tr>
<tr>
<td>Haroldsen et al., (2007)</td>
<td>4.0%</td>
<td>12 months</td>
<td>12</td>
</tr>
</tbody>
</table>

*oral oestrogen vs transdermal oestrogen

Table 7 Reduction in muscle CSA in non-athletes.

<table>
<thead>
<tr>
<th>Article (by date)</th>
<th>Suppression Effect</th>
<th>Time Frame</th>
<th>Participants (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wiik et al., (2019)</td>
<td>4.2% quadriceps</td>
<td>12 months</td>
<td>11</td>
</tr>
<tr>
<td>Tack et al., (2018)</td>
<td>8.9% calf, 4.1% forearm</td>
<td>12 months</td>
<td>21</td>
</tr>
<tr>
<td>Van Caenegem (2015)</td>
<td>8.6% forearm, 4.4% tibia</td>
<td>12 months</td>
<td>49</td>
</tr>
<tr>
<td>Gooren (2004)</td>
<td>9.5% quadriceps</td>
<td>12 months</td>
<td>19</td>
</tr>
<tr>
<td>Elbers et al., (1999)</td>
<td>9.5% thigh</td>
<td>12 months</td>
<td>20</td>
</tr>
<tr>
<td>Elbers et al., (1999)</td>
<td>11.7% thigh</td>
<td>36 months</td>
<td>20</td>
</tr>
<tr>
<td>Lapauw et al., (2008)</td>
<td>23.9% forearm, 24.1% tibia</td>
<td>48 months</td>
<td>69</td>
</tr>
<tr>
<td>Van Caenegem (2015)</td>
<td>11.4% forearm, 6.0% tibia</td>
<td>Baseline</td>
<td>98</td>
</tr>
</tbody>
</table>

Table 8 Strength losses in non-athletes.

<table>
<thead>
<tr>
<th>Article (by date)</th>
<th>Suppression Effect</th>
<th>Time Frame</th>
<th>Participants (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wiik et al., (2019)</td>
<td>0% quadriceps</td>
<td>12 months</td>
<td>11</td>
</tr>
<tr>
<td>Scharff (2019)</td>
<td>4.5% handgrip</td>
<td>12 months</td>
<td>249</td>
</tr>
<tr>
<td>Auer (2016)</td>
<td>0% handgrip</td>
<td>12 months</td>
<td>20</td>
</tr>
<tr>
<td>Van C (2015)</td>
<td>7.1% handgrip</td>
<td>12 months</td>
<td>49</td>
</tr>
</tbody>
</table>

Direct evaluation of performance is currently the most reliable method of assessing the impact of testosterone reduction on athletic ability, which in turn is used as a basis for fairness. However, limited evidence currently exists in this area. Harper (2015) used 200 self-reported race times from 8 trans women runners. Runners were at least 10% slower after transition and achieved World Masters Athletics (WMA) age-grade equivalence before and after transition. Similarly, Roberts et al., (2021) used one-minute maximal push-up count from a standardized army fitness test to determine the effect of medical transition on strength. This type of activity is critical to understand how performance is impacted not only by upper body strength, but also muscular endurance, cardiovascular...
endurance, and technique. Through this study they saw that trans women lost all performance advantage during 12 months on HRT, making it highly indicative of the impact on performance in sports where strength is but one component that is required for success.

Harper (2020) presented additional preliminary evidence (Table 9) that comes from ongoing research on the topic of retrospective performance declines of athletes after medical transition.

<table>
<thead>
<tr>
<th>Trans woman sprinter (100m)</th>
<th>Race Times</th>
<th>Age</th>
<th>Athletic Gender</th>
<th>Age Group Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.95</td>
<td>31</td>
<td>male</td>
<td></td>
<td>89.4%</td>
</tr>
<tr>
<td>12.54</td>
<td>39</td>
<td>female</td>
<td></td>
<td>86.6%</td>
</tr>
</tbody>
</table>

Trans Women Cyclist

<table>
<thead>
<tr>
<th>Power Output</th>
<th>Age</th>
<th>Athletic Gender</th>
</tr>
</thead>
<tbody>
<tr>
<td>338</td>
<td>32</td>
<td>male</td>
</tr>
<tr>
<td>300</td>
<td>36</td>
<td>female</td>
</tr>
</tbody>
</table>

Trans Woman Rower (2km)

<table>
<thead>
<tr>
<th>Race Time</th>
<th>Age</th>
<th>Athletic gender</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:01</td>
<td>18</td>
<td>Male</td>
</tr>
<tr>
<td>7:25</td>
<td>20</td>
<td>Female</td>
</tr>
</tbody>
</table>

This evidence is highly suggestive that any potential performance advantage is negated through effective testosterone suppression. Additional studies led by Joanna Harper are currently underway prospectively examining the impact of HRT on performance. It is important to note that some organizations have claimed safety as a value which may merit the discrimination of trans athletes. However, this appears to be an illogical position given the performance data. If there exists no policy regulating height and weight of athletes, and no performance advantage exists in terms of strength, LBM, CSA, or hemoglobin, then no basis exists for a safety concern. There currently exists no studies which examine transgender athletes posing a realized or potential safety risk to cis women in sport. The only available comparisons use population data for measuring potential impacts of cis men against cis women. As mentioned above, this should not be considered an equivalent comparison.
Evidence of Other Biological Markers

There seems to be agreement among biologically based studies that we do not have the appropriate data or research to make evidence-based recommendations or decisions. Hamilton et al., (2021) suggests that, in absence of the research needed to make informed decisions, testosterone is an imperfect but most actionable proxy. This latter point is not consensual. There are many biological markers used in studies that are inadequate as biomarkers. There are also some additional biomarkers that may show promise if taken into account, all described in Table 10 below (Level of evidence for biological markers). It is important to re-emphasize here that bodies are systems, and there is not one discrete biomarker that allows easy comparison of athletes’ bodies to each other in terms of performance.
Table 10 Level of evidence for biological markers.

<table>
<thead>
<tr>
<th>Biological Marker</th>
<th>Notes</th>
<th>References</th>
<th>Used As Marker In</th>
</tr>
</thead>
<tbody>
<tr>
<td>Handgrip strength</td>
<td>Not a reliable biological proxy; more related to hand size than gender.</td>
<td>Yeung et al., 2018; Alahmari et al., 2019</td>
<td>Yeung et al., 2018; Alahmari et al., 2019</td>
</tr>
<tr>
<td>Muscle mass</td>
<td>A potentially reliable biological proxy but must be controlled for height and weight.</td>
<td>Dual energy X-ray absorption (DEXA or DXA) is considered a reference standard for muscle mass measurement (Buckinx et al., 2018), though evaluation of the technology seems mostly centred on diagnosis and care for sarcopenia. The technology has yet to be evaluated in studies of gender and athleticism.</td>
<td>Several studies used muscle mass as a biomarker, with significant methodological/analytical concerns.</td>
</tr>
<tr>
<td>Testosterone receptors</td>
<td>Should be considered/ measured along with testosterone levels, if pursuing testosterone as a marker.</td>
<td>As far as our research can tell, there exists no non-invasive, cost-effective way of determining the level of testosterone reception in an individual, but some studies mention receptor measurement might be helpful/complementary.</td>
<td>None found.</td>
</tr>
<tr>
<td>Osteology – q-angle</td>
<td>Not reliable biological proxy; more related to height.</td>
<td>Grelsamer, Dubey & Weinstein, 2005</td>
<td>Sutherland, Wassersug, & Rosenberg, 2017</td>
</tr>
<tr>
<td>Osteology – Bone density</td>
<td>Not reliable biological proxy; not related only to sex/gender but also link socio-economic position. Can’t be understood as strictly sex dimorphic.</td>
<td>Fausto-Sterling, 2005 Ritz, 2017 : 321</td>
<td>Sutherland, Wassersug, & Rosenberg, 2017</td>
</tr>
<tr>
<td>Red Blood Cell Count</td>
<td>Affects endurance and recovery.</td>
<td>(See Table 5)</td>
<td></td>
</tr>
</tbody>
</table>
Bodies are systems, and there is not one discrete biomarker that allows easy comparison of athletes' bodies to each other in terms of performance.

Through examining the available literature, we have significant confidence with the following statements:

1. There is no clear scientific evidence that high levels of naturally produced serum testosterone was predictive of athletic performance among cis women.

2. Female participation in elite athletics is significantly lower than male participation. This leads to a significant statistical artifact in performance data where statistical sampling results in a larger gap in performance than would otherwise exist if participation rates between sexes were equal. This issue is compounded by training advantage conferred by additional resources typically given to male programs over female programs.

3. Women with high serum testosterone levels well above the expected range of cis women as a result of natural variations in their sex-linked development (referred to also as ‘DSD’, ‘Difference of Sexual Development’, or ‘Disorder of Sexual Development’ - terms rejected by many in the intersex community as pathologizing) are overrepresented in some athletic events. However, selection bias may account for much of this discrepancy, as well as the global variation in responses to women with high testosterone (i.e., in the Global North the number of women in the broader population who could present with high testosterone is artificially suppressed because of aggressive medical responses to children with intersex variation).

4. The higher levels of red blood cell count experienced by cis men is removed within the first four months of testosterone suppression. This suggests a rapid decrease in athletic performance particularly in sports with an endurance requirement.

5. There is no basis for athletic advantage conferred by bone size or density, other than advantages achieved through height. Elite athletes tend to have higher than average height across genders, there is overlap in height distributions among genders, and this is not currently considered an athletic advantage.

6. Trans women who are pre-testosterone suppression still have lower LBM, CSA, and strength than cis males. This indicates that the performance benefit experienced by these individuals cannot be generalized by examining cis male athletes.
7. Non-athletic trans women experience significant reduction in LBM, CSA, and strength loss within 12 months of hormonal suppression. It is important to note that this 12-month threshold is arbitrarily defined, and no significant studies examine the rate of LBM, CSA, or strength reduction over time.

8. When adjusting for height and fat mass, LBM, CSA, and strength after 12 months of testosterone suppression, trans women still retained statistically higher levels than sedentary cis women. However, this difference is well within the normal distribution of LBM, CSA, and strength for cis women (Jassen et al., 2000).

9. LBM, CSA, and strength loss continues after the 12-month initial testosterone suppression.

10. Evidence directly examining the effect of testosterone suppression as it directly affected trans women’s athletic performance showed no athletic advantage exists after one year of testosterone suppression (Harper, 2015, 2021).

11. Despite unavailability of the exact prevalence of trans women in the population, we can reliably conclude trans women are systematically underrepresented in elite athletics both in terms of participation and results.

12. Post gonad removal, many trans women experience testosterone levels far below that of pre-menopausal cis women.

13. The literature largely ignores areas where cis women have an athletic advantage over cis men.

14. Estradiol likely plays a role in athletic performance as trans women undergoing HRT increase their average body fat percentage (Handelsman et al., 2018). This in turn reduces performance through increasing body mass for the equivalent LBM.
Sociocultural Context and Framing of Trans Women’s Sport Participation

The evidence reviewed in this section provides clear indication that the questions cisgender sportspeople have about trans women competing in elite sport and policies that govern trans women’s participation in elite sport policies are founded in transmisogynist, misogynoir, racist, geopolitical cultural norms. The literature reviewed here can provide an excellent foundation for forward movement with regards to trans women competing in elite sport, help differentiate claims from empirical evidence, and help guide policymakers in building safer and inclusive competitive sporting environments.

It is worth noting that trans women athletes are a distinct group from intersex athletes. In elite sport, these groups are often combined because each of their existences is seen in elite sport as a challenge to the current structures of oppression. Sports administrators’ drives for what they frame as some kind of biological parity affect both of these athlete populations and act to forcibly exclude them from competition, locating ‘fairness’ in women’s and intersex peoples’ bodies. In this section, the authors review literature which instead locates ‘fairness’ in unjust systems within sport. Therefore, while the authors focus on the impacts on trans women athletes, some factors in this section may also have bearing on intersex athletes’ participation.
History of Gender Categorization in Elite Sport

A brief history of gender categorization policies and ongoing evolutions in elite sport is catalogued below. This timeline and the experiences of trans athletes are provided to illustrate the thinking around gender in elite sport as well as some experiences of athletes who lived through these policies. The long history of gender policies in elite sport is often used uncritically as reasoning that questioning transgender athletes’ participation in elite sport is a natural, neutral part of long-standing questions of gender and gender categorization, but there is a rich body of literature on the racist, sexist, eugenicist, geopolitical origins and ongoing evolutions of such policies that provides relevant context.

1930’s - Muscle Moll - (see Cahn, 1993)
1936 100 m sweep (intersex athletes) and Heinrich Ratjen
1937 International Association of Athletics Federations (IAAF), now World Athletics, Gender Protest Policy
1946 IAAF Medical Certificate
1948 International Olympic Committee (IOC) Medical Certificate
1966 European Athletics Championship – “Nude parades” / morphological and gynecological examination
1967 European Athletics Championship – “Barr body test” / chromosomes
1991 IAAF – Recommendation to end systematic sex/gender testing
1992 IOC – PCR-SRY / chromosomes
2004 Stockholm Consensus
2011 IAAF and 2012 IOC Consensus Statement on Hyperandrogenism
2015 IOC Consensus Meeting on Sex Reassignment and Hyperandrogenism
2015 Suspension of Hyperandrogenism Rules/2018 Testosterone Level Modification
2020 World Rugby Ban on the Participation of Transgender Women
The USGA [United States Golf Association] has done nothing to develop a policy to include transitioned women on tour. Rather, they have explicitly, through their policy, excluded transitioned women from competing on tour. They request a signed waiver by the entrant giving the USGA complete and unrestricted access to one’s medical records and pre-operative and post-operative psychiatric records. And I just find that horrendous. We are treated as a complete freak, and we are treated so differently to any other competitor with complete disregard to the real facts and medical conditions involved in our treatment and the person who we are. It’s an obvious policy developed based on emotion and fear.

-- Mianne Bagger about the USGA policy on trans athletes in Love et al. (2009)

“A few years ago
I was hospitalized. When I told the doctor that I play basketball she told me: "but if you play on a women’s team you are a cheater."

-- 40-year-old woman, non-elite athlete (Interview: 1h50, February 2019) Pavlenko (2019, 2021)
Continuing a Long History of Exclusion: The Women’s Category of Sport

Policies that impact trans women’s participation in elite sport are the continuation of a long history of exclusion of women from competitive sport.

The women’s sports category is the result of the historical exclusion of women from competitive sport, which was underpinned by pathologizing discourses about their bodies and the harms of their participation in physical activities. Policies that impact the practice of trans women in competitive sport emanate from the parallel history of efforts to define the female category in ways that excluded those women whose bodies were deemed to not conform to normative standards of femininity.

Forbidden to take part explicitly in sports from the end of the 19th century, women organized their own competitions during the 20th century and gained some access to sports that were prohibited to them (Prudhomme-Poncet, 2003; Rosol, 2004; Vilain et al., 2017); for example, the Women’s World Games in 1922 by the International Women’s Sports Federation (FSFI) occurred in response to the ban on participation for women in many Olympic events (Castan-Vicente et al., 2019). Throughout this period, women athletes were subjected to a "virilization trial" (Bohuon, 2008): the accusation of not sufficiently meeting the socially expected criteria of femininity, not being enough of a woman by society standards because of traits like having muscles, wearing sportswear deemed masculine, or because of their hairstyle or body hair (Bohuon, 2008; Vilain et al., 2017).

This virilization trial, which is found in discourses, and the exclusion by sports organizations from allowing some women to compete in their competitions gradually became systematized by the femininity test (Bohuon, 2012; Sullivan, 2011). Behind the pretext of protecting the women’s category from potential impostors, sports federations sought to establish sex/gender control to police femininity and performances (Bohuon, 2012; Hargie, 2017; Sullivan, 2011; Vilain et al., 2017). In this context, being a woman is understood as having physical capacities inferior to men as evidenced by the sex controls. At the 1966 European Athletics Championship, the athletes were subjected to an anatomical and physical test attesting that they were women. Therefore, if their body matched medical expectations and if their performances were lower than men's, they were cleared as women for the event (Bohuon, 2012; Sullivan, 2011).

Since 1966 we have witnessed different waves of femininity tests implemented by sports organizations (Bohuon, 2012; Hargie, 2017; Sullivan, 2011; Vilain et al., 2017). Anatomical at first, then genetics, and now hormonal. All tests were inconclusive because contrary to the medical assumption that led to these tests, men and women are not dimorphic and show overlap in all those areas (Pape, 2017). Instead of considering non-dimorphic data as part of the diversity of human bodies, these findings (when they are related to women’s bodies) are pathologized, excluded from scientific studies results, and policed in sport regulations (Pape, 2019). Today, in line with
medicalization and control of women’s bodies by sports institutions, policymakers still (erroneously) assume and insist that human bodies are dimorphic, testosterone is a male hormone, testosterone is the key to winning competitions, and women are inherently weaker than men. These assumptions are implemented without tangible evidence as a way of maintaining patriarchy and the domination of men over women. (Erikainen, 2020; Karkazis and Jordan-Young, 2018; Pieper, 2016; Sanchez et al., 2013; Sullivan, 2011).

Systematic gender testing was canceled in 2000 (Sullivan, 2011), but the controversy around Caster Semenya’s victory at the 2011 Athletics World championship re-actualized the debate about medical regulation of women athletes. "Visual" doubts, therefore, external criteria of racialized cis-heterosexist femininity have been used to enforce gender testing, resulting in the fact that almost all women targeted by those tests in the 21st century are racialized women from the Global South (Bohuon, 2012; Karkazis and Young, 2018). Making gender testing a way of maintaining power on the geopolitical and racial organization of women athletes’ bodies (Bohuon, 2012; Karkazis and Jordan-Young, 2018).

With a regulation like the 2012 IAAF Statement on Hyperandrogenism, racialized athletes from the Global South are sent to the Global North to be "treated," "saved" and taken in charge for their "diseases" (namely having a testosterone level above the expected average by women) which are created by Western medicine and do not present any danger for the athletes (Karkazis et Young, 2018). Sex/gender regulation policies are produced by sport organizations in the name of fairness without taking into account the living conditions of marginalized women (racialized and/or trans) that actually constitute the opposite of an unfair advantage given the lack of access to resources to train (Erkainen, 2020; Karkazis and Jordan-Young, 2018).

Social Factors in Keeping Women’s Sport Inferior to Men’s

There are many social factors involved in keeping the women’s category of sport inferior to the men’s category.

Women are banned from sports competitions. For example, women’s marathon was absent from the Olympics Games for 84 years (Vilain et al., 2017). Women were excluded from Olympic boxing until 2012 and they were not allowed to take part in the Olympic ski jumping event until 2014. The Olympic skeet event was originally mixed gender but, in 1992, after the victory of a woman named Shan Zhang, women were banned from this event at the 1996 Olympics. The possibility for women to participate was reinstated in 2000 with a women-only category and with different shooting criteria, making it so the performance of men and women were not directly comparable. During the 2021 Olympic canoe-kayak championship, women did not have races longer than 500 m, while men’s races are 1000 m long - another example of differences between
women’s and women’s elite sport which have the effect of maintaining the positioning of
men’s and women’s elite sport.

Other social factors have been forgotten in most articles about competitive differences
between men and women: lack of women’s teams depending on sports and
disparities in access to sports facilities for women’s teams, lack
geographical positions, lack of financial resources (gender pay gap), and lack of staff (including medical staff).

Sexism in sport impacts women’s participation at each step, including restrictions in
strengthening exercises because of the social representation of what women should
look like. Women have had to quit sport, change clubs/trainers, and practice in
deteriorated conditions due to sexual violence (Ohlert, 2020), lesbophobia (Griffin,
1998), classism, racism, and intersex phobia (Karkazis & Jordan-Young, 2018), or transphobia (Cohen et Semerjian, 2008; Griffin et al., 2017; Ivy, 2020; Jones et al., 2017;
Lenskyj, 2018; Tagg, 2012). Faulty and/or absent data about trans women’s
performances makes transphobia especially present and prominent in this context of
scarcity and scrutiny for women in elite sport.

Discrimination and Violence Against Trans Women

Trans women are subjected to discrimination and violence.

The living conditions of trans women are the result of downward social mobility and the
many cissexist discriminations they experience in this context. Surveys on the living
conditions of trans women in Canada show a strong limitation and discrimination in
access to vital spaces (housing, health care, work, public space including sports
facilities, etc.) meaning that they can be subjected to violence in every aspect of their
life. Trans women are disproportionately affected by unemployment and homelessness
(Rotondi et al., 2011). Almost half of trans people who responded to the Trans Pulse
Survey earned less than $15,000 annually (Rotondi et al., 2011). Trans women are
disproportionately remote from salaried employment (Rotondi et al., 2011).

Discrimination at work encompasses harassment and physical and mental violence,
including sexual violence (Grant et al., 2011). More than half of trans women say they
feel uncomfortable going to see a doctor (Bauer et al., 2015). Discriminations in this
context include refusal to provide care by a medical professional (Bauer et al., 2015).
Transphobia impacts access to public spaces. In fact, 97% of trans people in the
Ontarian studies reported to have avoided at least one type of public space because of
their trans status (gyms were the second space most avoided after public washrooms)
(Scheim et al., 2014).

These discriminations are incredibly salient to the question of ‘fairness’ regarding trans
women athletes’ inclusion in elite sport. There are some ways discrimination impacts
trans women’s access to sport directly (such as administrators’ varying or absent
standards of safety and/or availability of necessary sport spaces such as change
rooms, training facilities, and washrooms), and others which are a bit more complex but
relevant (for example, the impacts of lower income or availability of secure shelter on participation and/or excellence in sport). All of these factors ought to be taken into account when thinking through the questions of what makes sport ‘fair’ and are important to understand the context of trans women’s participation. This evidence suggests there needs to be more focus on all discrimination against trans women as it appears in elite sport.

Myths About Trans Women Circulated in Sport

There are myths surrounding trans women in sport.

It is a myth perpetuated by and through sport that trans women are akin to cis men. Biomedical studies that inform trans sport policies have cis men as a proxy to trans women in comparison with cis women and use terms like “biological male” or “transitioning males” (Hilton and Lundberg, 2020; Sutherland, 2017). In other words, trans women are assimilated to cis men. The debate is framed not with the concern of trans women's participation in sport, but with the supposed place of a man in the women's category even though trans women's bodies and living conditions are not comparable to cis men’s (Ivy and Friedlaender, 2020).

Trans women are assimilated to the stereotype of the cheater who would enter women's competitions with the sole aim of exploiting a single-sex space reserved for women (Hilton and Lundberg, 2020; Sutherland, 2017) – another myth with deep impacts. This fear is unsubstantiated and completely ignores the material living conditions of trans women and the conditions in which women participate in sport. Transitioning, and/or trans women’s status as trans, is often utterly misunderstood in sport discourse as a deliberate choice rather than a necessity for an individual’s survival, despite strong evidence that affirming one’s gender identity is important to health and well-being. These kinds of presumptions and misunderstandings play into the same unsubstantiated transphobic fears that cis men choose to transition solely to gain advantage in elite sports. However, the discrimination and violence experienced by cis and trans women in sport and everyday life expose the dangerous dismissive attitudes towards trans identities as well as some of the contradictions, ignorance, and violence imposed in requiring trans women to adhere to specific medical transition guidelines in order to participate in sport competitions.

It is a myth that trans women dominate (i.e., win) all sports. In response to the literature review on trans athlete's participation in sport by Jones and al. (2017), Richardson and Chen (2020) report a lot of false information without scientific precautions. For example, the fact that several trans women have been the subject of media coverage is used to argue that there are frequent and massive occurrences of trans women athletes winning sport competitions when, in fact, the literature shows that no trans woman has ever won an Olympic medal ever since they have been allowed to compete in 2004 (Ivy
Trans women are over-sensationalized in media due to the moral gender panic that surrounds their experience (Espiniera, 2015).

Experiences of Systematic Discrimination in Sport

Qualitative studies with trans women athletes show that trans women face a lot of discrimination while participating in sport.

Negative experiences and exclusion of sport participation for trans women are highly reported in the academic literature (Cohen and Semerjian, 2008; Barras, 2021; Devis-Devis et al., 2020; Elling-Machartzki, 2017; Hargie, 2017; Jones et al., 2017; Tagg, 2012). Studies with trans women athletes reveal the anxiety-provoking climate and constant surveillance with which trans athletes must contend at all stages of practice: locker rooms, teammates, opponents, staff, dress codes, supporters, obtaining a license, physical and verbal violence (Jones et al., 2017). This leads to a phenomenon of disengagement from the practice of physical activity and sports in the trans population (Cohen and Semerjian, 2008; Devis-Devis et al., 2020; Elling-Machartzki, 2017; Hargie, 2017; Jones et al., 2017; Tagg, 2012). Discriminatory policies also have a role to play in maintaining the climate of violence that trans women experience (Jones et al., 2017), as well as being outed (McClearen, 2015), violence from staff, the public, and being pushed out of sport (Cohen, 2008) and having to choose between continuing to play or transitioning (Lucas-Carr et al., 2012). Discrimination shapes sport participation making the trans population proportionally and on average less engaged in sports activities than cis people (Muchicko et al., 2014). We might imagine that these kinds of experiences have negative consequences for their athletic ability and athletic development, though they are not typically factored into scientific studies of testosterone.

Knowledge Production and Impact

Different depth, weight, and levels of consideration of scientific knowledge and political factors are imbedded in the framing of trans policies in sport.

The literature on trans sport policies, their implementation, people who write them and apply them, consequences for athletes, and the debates they frame is constitutive of the social hierarchy of knowledge and the discrediting of some sciences for the benefit of others (Pape, 2019). Biomedical studies are overvalued in sports policies in comparison to social sciences studies (Pape, 2019). Research in science and gender, and in particular the work of Anne Fausto-Sterling, have shown that sex is gender-dependent and that the gender system modifies so-called biological sex (Ritz, 2017). The exclusion of certain types of knowledge from the restricted definition of scientific by the sport’s governing bodies makes it possible to obscure the power relations at play in the creation, maintenance, and legitimization of regulations (Pape, 2017, 2019). Thus, the literature insists on looking at regulations not only at a biological scale, but on the
social and political climate that creates them. This analytical framework makes it possible to highlight the links between some sports organizations, studies in biomedical sciences, and groups with an anti-trans agenda.

Scientists working in this field have organizational ties that suggest particular ideological commitments (Itani 2020, Pape, 2019, Pearce et al. 2020). Moreover, some biomedical scientists that publish academic papers on trans women participation in sport to advise sport organizations are part of anti-trans activism. For example, in the United Kingdom (UK) since 2017 and the plan to reform the 2004 Gender Recognition Act (very expensive, invasive, medicalized, and long process to change the gender marker on the birth certificate), some women's trans-exclusionary organizations, such as Fair Play for Women, expanded their movement (Itani, 2020; Pearce et al., 2020). The science is used by this group strategically (using only the data that suit their view) to assist their essentialist agenda that sex is immutable. These organizations use sports as a strategy because preconceived ideas about trans individuals can spread quickly through sport due to the sensationalist medical treatment. Sports are used as a strategy because it emulates strong debate. This allows them to quickly spread their agenda as their target does not look at how the science they used is constructed (Lefebvre, 2019) and rely on misinformation regarding the implementation of sport policies (Pape, 2000). For example, we can see that there is data that is systematically overlooked, like the diversity advantages that one can have while playing sport. These include financial material resources such as access to infrastructure, equipment, nutrition, time to train, salary, etc. Yet these resources are not subjected to regulations and are not framed by sports organizations to ensure fairness (Karkazis and Jordan-Young, 2018). It is therefore important to consider the differences in considerations by the governing sports organization between all the sports advantages that may exist and the fact that only biological factors are policed on women’s bodies. While Michael Phelps is celebrated for his physical advantages that allow him to compete and be successful at the highest level of sport, women (cis, trans, and intersex) are scrutinized and have their performance medically restricted (Jones et al., 2020; Karkazis and Jordan-Young, 2012, 2018).

Approaches to Balancing Biological and Sociological Considerations

As the grey literature revealed, some sport organizations have produced regulations that take into account social issues, discrimination experienced by trans women, and the discourse surrounding their participation in sport competitions. For example, the rules of the UK Roller Derby Association (UKRDA), a collective sport with important and violent contacts, allow trans women to compete in the women category with no restrictions by taking into account the diversity of women's bodies (cis, intersex, and/or trans) and the many factors of sports performance other than physical capacities, namely technical, tactical, and strategic intelligence: “The UKRDA do not believe that we can prove that transgender skaters experience a physical advantage or disadvantage over cis-gendered (non-trans) skaters. To maintain fairness and equality, and as well as
to avoid legal challenge, the UKRDA feel that we cannot categorically state that skaters who identify as a different gender than that which they were assigned at birth experience a physical advantage and we cannot, therefore, utilize the legal exceptions. The legislation states that evidence is required to claim an ‘unfair advantage.’ In a roller derby team, there exists a spectrum of heights, weights, natural abilities, and existing or gained fitness levels. Each skater on a team utilizes the strengths they have — whether it be a speedy, explosive jammer compared to a more powerful, offensive style jammer, or a super-agile blocker compared to a powerhouse blocker. It is not therefore relevant to deem a transgender skater ineligible for inclusion in roller derby based on what stage of gender transition they are at or how their physical body presents.”

The statement from the Australian Human Rights Commission Regarding Testosterone and Competitive Advantage notably draws to sport organizations in process of policy-making’s attention that knowledge on testosterone is restricted and debated, and many factors outside testosterone influence sport performance and capacities. Further, the statement reminds affected parties that there have been no cases of people transitioning solely to gain advantage in a sport, and that, “for transgender athletes, as for all athletes, sport is about the physical, social and mental health benefits of participation” (p.37). There are, regrettably, also problematic clauses in the statement which permit Australian sport governing bodies to make their own decisions at the elite level and continue with exclusionary practices. More work needs to be done to act, and to seam these acknowledgements closer to implementation.

For a list of some of the sport organizations in Canada who have trans inclusion policies, please see Appendix C.

Conclusion

There is currently no substantial research evidence of any biological advantages that would impede the fairness of trans women competing in elite women’s sport. There currently exists no evidence to suggest that trans women who elect to suppress testosterone (through, for example, gender affirming hormone therapy and/or surgical gonad removal) maintain disproportionate advantages over cis women indefinitely. More specifically, current evidence suggests any biological advantages trans women have in sport performance do not fall outside the range observed among cis women after testosterone suppression. Red blood cell count is well within cis women’s range after four months of testosterone suppression. Strength is a possible exception, a topic on which research is limited/non-existent. Available related research seems to suggest strength decreases over time after suppression, demonstrated through significant decreases in strength (LBM, CSA) after 12 months of suppression and ongoing decreases after the arbitrary one-year mark. Even so, the cut-off levels of testosterone for trans women and of the length of time after testosterone suppression in current sport policies are not currently evidence based. Most biologically based studies
focused on the question of appropriate levels of testosterone for testosterone-suppressed trans women for fair competition among women (cis and trans) and did not arrive at a consensus about (a) whether the question of testosterone is a and/or the most salient biological marker, nor (b) assuming testosterone is an imperfect proxy of heightened and/or unfair advantage in performance, at what levels such advantages are incurred. Further, there is currently no existing evidence on the measurable difference testosterone has on lean muscle mass for active (versus sedentary) individuals, and no research in the context of high-performance athletes that would help understand, for example, testosterone uptake capacities among cis and trans women athletes. There are also questions which remain about what length of time gender-affirming hormone therapies are appropriate to be comparable to cis women on various factors, as well as questions about the definitions of what can be celebrated as a biological gift versus condemned as an ‘unfair advantage’ and where the boundaries of those are.

Additional biomarkers (such as handgrip strength, hip angle, bone density) have been used uncritically in positivist biological studies to demonstrate cis men’s purported biological advantages over cis women, but there is not sufficient evidence these measures are salient to the question of trans women’s participation. In fact, studies often use these measures without examining appropriate comparison populations (often resulting in an uncritical comparison of cis men to trans women, which additional evidence suggests is not apt), possible confounding factors, controls for weight and height, controls for hand size, or other methodological concerns. Some study authors also selectively reported on measures (for example, one review left out the results of a primary study whose conclusion ran counter to their claims), did not include important conflicts of interest (such as funding from groups who support the exclusion of trans women from sport and/or society), and relied on ‘common knowledge’ claims that were not scientifically supported as foundational assumptions.

There are also key areas of positivist biological research that remain unexplored. For example, the ways in which trans women are biologically disadvantaged in elite sport, and the ways in which cis women tend to outperform cis men on a population level in some sport-relevant attributes (e.g., endurance, recovery, perfusion, balance).

In this dearth of positivist evidence (evidence which anticipates one objective truth), research indicates that people not only fall back to socio-cultural, historical, geopolitical systems, but are actively engaged in political practices of non-knowledge and active ignorance within these systems when it comes to the topics of gender, sex, and trans women’s participation in elite sport. It is within this absence of biological evidence and within these systems that current arbitrary boundaries, policies, limits, and levels are formed.

There is strong evidence that elite sport policy is made within transmisogynist, misogynoir, racist, geopolitical cultural norms. There is evidence that the fears that cis women need be protected from trans women in elite sport are unsubstantiated and
misplaced. What threatens women’s elite sport, for cis and trans women, is not trans women, but is rather misogyny in the form of underfunding, non-parity in participation and leadership, inequitable sport space allocation/access, and a range of sporting opportunities not afforded to women (cis women and trans women) in equitable ways. Counter to these misplaced fears and in addition to the limited opportunities for women in sport, trans women also face overlapping systems of cissexism and transmisogyny (among others) in accessing sporting opportunities.

To answer the positivist question of what biological factors would make sport ‘fair’ among cis and trans women, more research needs to be funded and conducted using appropriate, ethical methods and populations. The critical question of what sociocultural factors would make sport ‘fair’ among cis and trans women can already be adequately answered but requires transformations and more actions towards equitable sport at the elite level. Many current trans inclusion policies at high-performance levels in Canada act as trans exclusion policies or have arbitrary criteria that trans women must meet to compete (Re-creation Collective, 2021). Sport organizers need better education, dedicated resources, and high-quality research to confront, disrupt or transform gendered systems.
Bibliography

Appendix A: Detailed Tables of Reviewed Academic and Grey Literature

HRT = hormone replacement therapy
HST = hormonal-surgical treatments

Academic Literature

The first eight articles in the table below are primary studies (i.e., individual original research studies) and syntheses (i.e., systematic reviews, meta-analyses, other syntheses) which the authors considered especially important to highlight given their prominence in literature, policy, and/or media. The rest of the articles listed are presented in order of review.

Table 11 Detailed review table, syntheses and primary literature.

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Year</th>
<th>Kind of Study and/or Sample</th>
<th>Methods/Study design (PICO where relevant: Population, Intervention, Comparator, Outcome)</th>
<th>Self-identified trans researcher(s) lead and/or trans research team members?</th>
<th>Key Conclusions</th>
<th>Key Reviewer Criticisms</th>
<th>Other notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jones, B. A., Arcelus, J., Bouman, W. P., & Haycraft, E.</td>
<td>2021</td>
<td>Literature review</td>
<td>Systematic literature review Research papers: between 1966 and 2015 with keywords - gender dysphoria, gender identity disorder, trans people, trans individual, transgender and transsexual AND physical activity, exercise and sport Regulations: google search</td>
<td>Unknown</td>
<td>In this paper, the authors conducted a literature review of 8 research articles looking at the social and biological conditions affecting trans people’s participation in sport and looking at 31 sport regulations governing trans people’s participation in sport. The results show that the majority of trans people have had a negative experience within the sports space. A scientific void is observed surrounding the biological issue of trans people having a supposed physical advantage. Thus, sports governing bodies do not rely on any tangible medical evidence to construct their rules, leading to the exclusion of an already marginalized population from competitive sport in this space. Moreover, this logic leads to the reinforcement of the exclusion process that is already in place.</td>
<td>It is important to note that the regulations are not based on medical evidence but rather on an assumption that stems from cissexism and oppositional sexism (Serano, 2007). Namely, the idea that the women’s category and the men’s category are mutually exclusive and that trans women are in fact men. Under this assumption, federations do not need medical evidence on trans athletes to implement their rules. This is precisely what is denounced in this article. The literature review on qualitative research conducted with trans athletes attests to the need to obtain a license, and sport organizations maintain discriminatory rules. Finally, this violence can manifest as physical and/or verbal violence from teammates, opponents, staff, supporters. The 31 regulations named in the article have not been fairly studied. The article focuses on the criticism of IOC rules. The inclusive rules of quidditch or roller derby are not presented (although listed in a table).</td>
<td>711-712: conclusion of the analysis of the regulations “Currently, the majority of sport policies unfairly exclude transgender people from competitive sport, as the requirements they place on them are not underpinned by evidence-based medicine. Until (and if) there is consistent and direct evidence to demonstrate transgender people have an athletic advantage, it seems unreasonable to exclude them on any basis.” 713: Difference in consideration of biological vs. social advantage factors “At the current time, this is a difficult issue to address considering that there is a lack of direct and consistent physiological-performance-related data with transgender people, which is preventing a consensus from being made as to whether transgender people (especially transgender female individuals) do or do not have an athletic advantage. It may be sensible to suggest that until there are direct and consistent scientific data to suggest that transgender competitors have an advantage, transgender people should be allowed to compete in accordance with their gender identity with no restrictions (e.g., no requirement to have cross-sex hormones, gender-confirming surgery). The athletic advantage transgender female individuals are perceived to have (based on...</td>
</tr>
<tr>
<td>Hilton, E., & Lundberg, T.</td>
<td>2020</td>
<td>Analysis of Hilton & Lundberg (2020) Transgender Women in the Female Category of Sport: Perspectives on Testosterone Suppression and Performance Advantage</td>
<td>Presented as a scientific review but more accurately is an argumentative essay</td>
<td>No</td>
<td>Hilton & Lundberg do not appropriately review the available literature and draw false comparisons between men and women athletes. The assumptions employed and conclusion posed by the authors is therefore not supported by evidence found in the literature. The authors systematically use adjustment for mass instead of fat-free mass which leads to significant errors when comparing population groups. This argument is of key importance as transgender women athletes undergoing HRT increase their estradiol, affecting total body fat percentage, and also significantly reduces testosterone, reducing muscle mass, red blood cell count and other factors important for athletic performance. In Table 4 of their article, Hilton & Lundberg (2020) summarize their findings from available literature, categorizing differences between men’s and women’s athletic performance. This table has many errors and omissions including as some examples: 1. The reference group employed compares "average cis women" to cis men, without adjustment for height or weight. This is significant since cis men are, as a population, taller than cis women, and we would expect to see similar results in comparing any taller group to a shorter group (for example, comparing five foot four inches tall cis women to five foot ten inches tall cis women). 2. Authors state that "grip strength provides an excellent proxy measurement for general strength in a broad population." However, this is incorrect (Yeung et al., 2018). Grip strength is largely correlated with hand size rather than strength due to gripping testing device easier (Alahmari et al., 2019). 3. The authors cite a study whereby testosterone-suppressed untrained transgender women see an increase of lean mass (4% leg and 2% overall) after an intense 8-week training cycle. However, they omit Roberts, Nuckols, & Krieger’s (2020) findings that untrained females also show high capacity to build muscle mass especially in upper body strength. The authors also do not show the relative strength compared to indirect and ambiguous evidence) may be no greater than widely accepted physiological (e.g., large hands) and financial (e.g., training opportunities) advantages that some cisgender people possess in competitive sport.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hilton & Lundberg do not appropriately review the available literature and draw false comparisons between men and women athletes. The assumptions employed and conclusion posed by the authors is therefore not supported by evidence found in the literature. The authors systematically use adjustment for mass instead of fat-free mass which leads to significant errors when comparing population groups. This argument is of key importance as transgender women athletes undergoing HRT increase their estradiol, affecting total body fat percentage, and also significantly reduces testosterone, reducing muscle mass, red blood cell count and other factors important for athletic performance. In Table 4 of their article, Hilton & Lundberg (2020) summarize their findings from available literature, categorizing differences between men’s and women’s athletic performance. This table has many errors and omissions including as some examples:

1. The reference group employed compares "average cis women" to cis men, without adjustment for height or weight. This is significant since cis men are, as a population, taller than cis women, and we would expect to see similar results in comparing any taller group to a shorter group (for example, comparing five foot four inches tall cis women to five foot ten inches tall cis women).

2. Authors state that "grip strength provides an excellent proxy measurement for general strength in a broad population." However, this is incorrect (Yeung et al., 2018). Grip strength is largely correlated with hand size rather than strength due to gripping testing device easier (Alahmari et al., 2019).

3. The authors cite a study whereby testosterone-suppressed untrained transgender women see an increase of lean mass (4% leg and 2% overall) after an intense 8-week training cycle. However, they omit Roberts, Nuckols, & Krieger’s (2020) findings that untrained females also show high capacity to build muscle mass especially in upper body strength. The authors also do not show the relative strength compared to
| 4. | They claim the 12 months hormone suppression as determined by the IOC is insufficient by using data where hormone suppression was present for less than two months. |
| 5. | Pelvic width comparison is used as a measure, but studies show that pelvic width difference, including q-angle, does not have any benefit for athletic ability (such as moving or jumping), gait differences, lift ability and risk to injury also are not meaningful as a result of q-angle (Bruton, O'Dwyer & Adams, 2013; Hertel, Dorfman & Braham, 2004; Kernozek & Greer, 1993; Thomas, Corcos & Hasan, 1998; Nguyen et al., 2009; Sigward & Powers, 2006). This includes a study by Sigward & Powers which was referenced by the authors as leading to increased injury in athletics, but the original paper states, "No differences in kinematics were found." |
| 6. | Bone density was used extensively as evidence of the advantage trans women retain. The claims were unsubstantiated, with no citations to demonstrate bone density as a performance enhancer. |
| 7. | The authors argue that larger lung size is a retained advantage. However, they do not adjust for height and ignore studies which have demonstrated that lung size is not a good predictor for sport performance. The differences are due to respiratory muscles enhancement, not lung size [Degens et al., 2019; Hopkins et al., 2018]. These findings are misrepresented in the table with the conclusion that "Respiratory function, pulmonary ventilation (maximal)" are significant, when they are not. Specifically, "MBC is not likely to be an adequate physiological measure of the competence of the respiratory system in strenuous work and should be regarded rather as the trained female competitors - a more appropriate comparison group - nor do they include that their control group without testosterone suppression gained significantly more mass and a 400% greater increase to isometric strength. The authors additionally omit that trans women participants failed to gain any noticeable gains to isometric strength. Yet despite these observations, the authors conclude "endogenous testosterone is of paramount importance for the muscular adaptation to strength training."
biomechanical limit of the possibilities of the ventilatory apparatus" (Breslav, Segizbaeva, & Isaev, 2000). Or that it is not a limiter for exercise, “After differences in lung volume are accounted for there is no intrinsic sex difference in the DLco, Vc, or Dm response to exercise” and “together, these data suggest that the pulmonary capillary blood volume response is proportional to lung size and is adequate to meet individual oxygen demand during exercise” (Bouwsema, Tedjasaputra & Stickland, 2017). The limiting factor in endurance sport however is oxygen carrying capacity of blood (red blood cell count which is affected by hormones dramatically) and heart muscle (Fomin et al., 2012; Åstrand et al., 1964).

8. Hemoglobin (red blood cell count) is drastically affected by HRT, falling in cis women’s range after 6 months (SoRelle et al., 2019). This is largely ignored by the authors.

9. Table 4 reports absolute values for Wiik et al (2020) instead of the published height adjusted levels.

10. Hilton & Lundberg exclude the female reference values from Fighera et al (2018) presumably as the latter’s conclusion was that appendicular lean mass was similar among trans and reference women, and lower in trans women when compared to cis men, a point that contradicts Hilton & Lundberg’s argument.

Harper, J., O'Donnell, E., et al.	2021	How does hormone transition in transgender women change body composition, muscle strength and haemoglobin? Systematic review with a focus on the implication for sport participation	Systematic review	Yes - lead author	Transwomen experience rapid reductions to hemoglobin as comparable with cis women. Decreases in strength, LBM, and muscle area are also observed but are still higher than cis women even after 36 months. Paper extensively reviews multiple areas that may impact performance such as body fat, hemoglobin, HCT, etc. Authors use reference studies which largely are not height adjusted and are not comparing athletic sample groups. As a result, comparisons for LBM, muscle area, etc., may be overstated due to lack of appropriate comparison groups. Additionally, a statistical significance in higher LBM does not translate into a practical significance or performance advantage which is currently unmeasured. Authors also heavily rely on studies which use handgrip strength to measure overall strength. There are numerous issues with using this as a reliable test. However, grip strength is largely correlated with hand size due to gripping testing device easier. (i.e., height) Alahmari, K. A., Kakaraparthi, V. N., Reddy, R. S., Silvian, P. S., Ahmad, I., & Rengaramanujam, K. (2019). Percentage difference of hand dimensions and their correlation with handgrip and pinch strength		
Hamilton, B. R., et al.	2021	Integrating Transwomen and Female Athletes with Differences of Sex Development (DSD) into Elite Competition: The FIMS 2021 Consensus Statement.	Literature review of key leaders in field.	Unknown	There is a lack of data quantifying performance before, during, and after testosterone suppressing interventions. Other biomarkers are important including testosterone sensitivity and responsiveness. Longitudinal studies are required to generate data for biological and sports performance for different sports or athletic events. Authors agree that sport-specific policies are needed based on peer-reviewed scientific evidence. Trans women and women with DSD may still retain some advantage, however this may not be an unfair advantage compared to other genetic or environmental advantages. It may be considered part of that athlete’s individual makeup. Recommendation of lowering the testosterone limit to 5nmol/l. Argument made against moving "goalpost" of advantage. Author argues that advantage can never be eliminated in sport but is rather a part of people’s unique makeup. Authors suggest unfair advantage needs to be categorized and agreed to. Study for testosterone limit is based on a limited sample size study (24 women) who were not elite athletes who received testosterone supplement and had moderate performance increases. This highlights a large divide in the literature between elite-level athletes, "active individuals" and untrained individuals. Testosterone likely plays a different moderating level for ceiling muscle mass (i.e., maximum results achieved for elite athletes) and the baseline sedentary levels. These two may not be impacted equally. Testosterone is argued as the only available biomarker that is widely available for eligibility purposes. However, I would argue that the "athletic gender" that is presented is widely flawed and can only be seen as "best available metric that is economical in its application." Paper does not include non-biological results including population differences based on access, nutrition/body composition or other determinants of health that can negatively impact these groups.		
Harper, J.	2015	Race Times for Transgender Athletes	Analysis of 200 race times (self-monitored and self-reported times) from 8 trans women runners.	Yes	Self-reported times were 10% slower after transition. Not elite athletes	This study is widely considered foundational to the field, despite methodological concerns and criticisms.	
Bermon, S. et al.	2017	Serum Androgen Levels in Elite Female Athletes	849 elite female track and field athletes were measured for serum testosterone (T) levels to determine if this population group has an elevated level of T compared to sedentary cis women. 99th percentile of elite athletes (after removing DSD and doping violations) was 3.08 nmol/l below the 10nmol/l limit set currently for hyperandrogenic	No	Study established baseline values for serum androgen values for elite track and field cisgender female athletes. Individuals who were confirmed or suspected of being hyperandrogenic (DSD) or doping individuals were excluded. Study admits however that not all individuals who are DSD or doping would necessarily be filtered out. Individuals were asked about their menstrual status and oral contraceptive use. Additionally, confounding variables such as athletic event, age and ethnicity were also all evaluated. Authors suggest that baseline hormonal profile information can be used to develop an Athlete Biological Passport (ABP) for evidence-based, fair policies and recommendations around anti-doping violations) was 3.08 nmol/l below the 10nmol/l limit set currently for hyperandrogenic	57	Study for testosterone limit is based on a limited sample size study (24 women) who were not elite athletes who received testosterone supplement and had moderate performance increases. This highlights a large divide in the literature between elite-level athletes, "active individuals" and untrained individuals. Testosterone likely plays a different moderating level for ceiling muscle mass (i.e., maximum results achieved for elite athletes) and the baseline sedentary levels. These two may not be impacted equally. Testosterone is argued as the only available biomarker that is widely available for eligibility purposes. However, I would argue that the "athletic gender" that is presented is widely flawed and can only be seen as "best available metric that is economical in its application." Paper does not include non-biological results including population differences based on access, nutrition/body composition or other determinants of health that can negatively impact these groups. Why this advantage and not others (i.e., Michael Phelps arm span, oxidation?) Interesting crossover between doping concerns and baseline testosterone levels for women’s sports. Historical bias (i.e., 1972 Olympics & soviet fears of forced doping.) Must evaluate not just effect of T but also DHEAS, SHBG or other receptor base which makes testosterone levels actually impact muscle mass (i.e., strength/athletic impact).
women with androgen sensitivity.

doping hormone. However, it is important to note that,
- "There is no clear scientific evidence proving that a high level of (sic, naturally produced) T is a significant determinant of performance in female sports."

Authors do not mention that DSD is overrepresented in elite athlete population group as an indicator that DSD and high levels of testosterone are indicative of high performance (i.e., selection bias of competition) and should check for social factors as well (i.e., physical appearance may socially select individuals to participate in sport).

ABP has been shown to be a more effective deterrent on doping in sports (5) and may be encouraged from a player safety and fairness perspective. Large distribution P0-P100 and P25-P75 suggests 99th percentile may not be as significant towards athletic effect. Serum T levels were not compared to athletic success at these events. As such it may be disingenuous to say that any population-based cut-off is appropriate. Elite athletes represent the top 99th percentile in athletic results (including speed, strength etc.) and therefore mean population distribution has little meaning as all elite athlete individuals are edge-case scenarios.

Measurement for T is highly varied by time of day, this makes baseline testing very difficult unless T is measured repeatedly over several time intervals.

<table>
<thead>
<tr>
<th>Roberta, T., A., Smalley, J., & Ahrendt, D. 2021</th>
<th>Effect of HRT on certain physical abilities of trans men and women</th>
</tr>
</thead>
<tbody>
<tr>
<td>(PICO where relevant: Population, Intervention, Comparator, Outcome)</td>
<td>No</td>
</tr>
<tr>
<td>Population: 29 trans men and 46 trans women in the U.S. military, between the ages of 19 and 46 (78% were under 30).</td>
<td></td>
</tr>
<tr>
<td>Intervention: Comparison of performance before and during the first 30 months of HRT.</td>
<td></td>
</tr>
<tr>
<td>- Number of push-ups in 1 min,</td>
<td></td>
</tr>
<tr>
<td>- Number of sit-ups in 1 min,</td>
<td></td>
</tr>
<tr>
<td>- Time taken to run 1.5 miles (2,400 m).</td>
<td></td>
</tr>
<tr>
<td>Comparator: cis men and cis women, no information given on the number, the average height/weight of the cis men is provided ~ 178 cm/83 kg as is the average</td>
<td></td>
</tr>
<tr>
<td>Background: The authors postulate that testosterone gives athletes a physical advantage when competing. The major changes occur during the first year of HRT.</td>
<td></td>
</tr>
<tr>
<td>Methods: Study population - 29 trans men and 46 trans women under the age of 30 who are in the US Army, between 2004 and 2014. Outcome measures - fitness testing before HRT, during and after the first year on HRT, and for 30 months after starting treatment.</td>
<td></td>
</tr>
<tr>
<td>Results: Effect of gender affirming hormones on body composition and athletics performance - The age at which the athlete begins HRT is shown to have no impact on the results. For trans women, estrogen intake is associated with weight gain and decreased physical ability. For trans men, testosterone is shown to have little impact on weight, but it increased their physical abilities. Athletic performance among transgender service members - Before HRT, trans women had a lower push-up score per minute than cis men, but higher than cis women. This difference was no longer present after two years of hormone treatment. The same is true when it comes to the number of push-ups completed. Their running times after HRT were lower than for cis men but not as low as for cis women. The trans men in the study did more push-ups than cis women before HRT but less than cis men. After one year of HRT, the difference between the trans men and cis men had disappeared.</td>
<td></td>
</tr>
<tr>
<td>This research suggests that it is possible to evaluate the physical abilities of trans athletes before and after starting hormonal treatment. However, the number of variables analyzed is limited. Drawing conclusions about athletic performance based on the number of push-ups and sit-ups a person can complete and how fast they can run 2,400 meters seems like a flawed exercise. Indeed, succeeding in these exercises cannot be correlated with an expectation of a high or very high level of performance in many sports. For example, the number of kick-ups that a person can do in soccer cannot be correlated with their level of performance in a game. Another interesting finding that has not been widely discussed is that trans men, who were trans before they started taking testosterone, performed better than cis women in push-ups and sit-ups. More importantly, they performed a similar number of sit-ups to cis men. The level of testosterone in the blood can therefore hardly be the only indicator of performance in sports. Intra-group differences are not analyzed.</td>
<td></td>
</tr>
<tr>
<td>Terminology: Transmen/ transwomen or transgender "cis gender women"</td>
<td></td>
</tr>
<tr>
<td>Wilk, A., Lundberg, T. R., Rullman, E., Andersson, D. P., Holmberg, M., Mandić, M., … & Gustafsson, T.</td>
<td>2019</td>
</tr>
</tbody>
</table>

height/weight of the cis women = 164 cm /65 kg.

Outcome: Trans women: increased weight, decreased performance. Push-ups and sit-ups per minute comparable to cis women after HRT. Running time performance lower than cis men but better than cis women after HRT.

Trans men: no significant change in weight, increased physical capacity. Number of push-ups per minute comparable to cis men after HRT. Number of sit-ups was comparable to cis men before HRT, increase in this performance after HRT. Running time similar to cis men after 1 year of HRT.

Discussion: They suggest waiting more than a year before allowing trans women to compete in the female category. Study findings and prior research: Trans men’s physical abilities increase while trans women’s physical abilities decrease. A difference is seen between strength and endurance events. Dysphoria and its impact on athletic performance must be taken into account. This would explain the higher physical abilities of trans men compared to cis women in push-ups and the opposite for trans women.

PICO where relevant:

- **Population:**
 - trans men (n=11) with an average age of 25 years and trans women (n=12) with an average age of 27 years, all non-athletes
- **Intervention:** biomechanical measurements (radiodensity, muscle size)
- **Comparator:**
 - biophysical measurements of trans men and non-athletic trans women during their first year of hormone treatment. Knee extension and flexibility, muscle size, and radiodensity measurements were taken.
- **Outcome:**
 - The results show that the trans men showed a 15% increase in muscle mass in their thighs and quadriceps and a 6% increase in radiodensity. The trans women lost 5% of their muscle volume. No change was observed in radiodensity. The trans men experienced an increase in muscle strength while the trans women did not experience any change in this area.

Study

- Biomedical study of trans men (n=11) and non-athletic trans women (n=12) during their first year of hormone treatment. Knee extension and flexibility, muscle size, and radiodensity measurements were taken. The results show that the trans men showed a 15% increase in muscle mass in their thighs and quadriceps and a 6% increase in radiodensity. The trans women lost 5% of their muscle volume. No change was observed in radiodensity. The trans men experienced an increase in muscle strength while the trans women did not experience any change in this area.
<table>
<thead>
<tr>
<th>Comparator: cis men and cis women. Number not reported.</th>
<th>Outcome: Increased muscularity in trans men, slight decrease of muscularity in trans women after 12 months of HRT</th>
<th>at a single center, represents a specific sub-population in Sweden; Non-athletes were used as a proxy; Issues relating to measuring and reporting of data collected such as: Baseline measurements done after 4 weeks gonad suppression; States some strength, size parameters greater in TW than TW or cis women (CW). However, does not show range of data and overlap, does not state if TW were outside normal range for TM or cis men (CM). CW measurements were obtained separately and prior to TW and TM. Few strength-based attributes measured, other measurements may be relevant. Other non-strength-based measurements may be relevant (e.g., muscular endurance, repetition, VO2 max); Persons recording strength measurements were not blinded; No measurements beyond 12 months gonad suppression, only 11 months after cross-hormones added and with 11-month testing in multi-month interval. Unknown where changes peak, cannot predict ongoing effects muscle strength, size; No discussion of inter-group differences vs intra-group differences. Strength, size, radiography density used as proxies for athletic performance. This is problematic: Significant differences in muscle strength, size, density may not correlate to a significant difference in athletic performance; Even if athletic performance were maintained in TW, this would not necessarily correlate to a safety issue.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bermon, S. & Garnier, P.-Y. 2017</td>
<td>2127 observations in male and female elite track and field athletes 2127 observations of competition best performances and mass spectrometry-measured serum androgen concentrations, obtained during the 2011 and 2013 International Association of Athletics Federations World Championships, were analysed. To test the influence of serum androgen levels on performance, male and female athletes were classified in No</td>
<td>The type of athletic event did not influence FT concentration among elite women, whereas male sprinters showed higher values for FT than male athletes in other events. Men involved in all throwing events showed significantly (p<0.05) lower testosterone and sex hormone binding globulin than men in other events. When compared with the lowest female FT tertile, women with the highest FT tertile performed significantly (p<0.05) better in 400 m, 400 m hurdles, 800 m, hammer throw, and pole vault with margins of 2.73%, 2.78%, 1.78%, 4.53%, and 2.94%, respectively. Such a pattern was not found in any of the male athletic events.</td>
</tr>
</tbody>
</table>
tertiles according to their free testosterone (fT) concentration and the best competition results achieved in the highest and lowest fT tertiles were then compared.

Karkazis, K., & Jordan-Young, R. M. 2018 Theoretical article, Discourse analysis

Analysis of the speech given at the IAAF by Stéphane Bremon, one of the members of the IAAF medical commission, during a presentation made in 2012 on the regulations that apply to hyperandrogenic athletes

Unknown

In this article, the authors show that the IAAF’s regulations on hyperandrogenism and the arguments that surround and construct them are based on sexist, racist, and colonial assumptions.

"T talk," i.e., the dialogue surrounding the use of testosterone. This dialogue perpetuates the myth and misrepresentation of this hormone as being a "masculine hormone" by attributing all social behaviors of masculinity to it. Attributing gendered social behaviors to hormones in this way is central to the hierarchical positioning and normalizing of a rigid dichotomy of the sexes. This dialogue is so socially anchored that it can exist without a concrete scientific/biological basis. Indeed, the authors explain that if there is a group-level correlation between testosterone and strength, speed, and muscle mass, such a correlation has not been proven at the individual level. In other words, these abilities cannot be directly correlated to testosterone levels alone. The strength and pervasiveness of this dialogue allows the differences in access to sport between the Global North and the Global South to be hidden.

So-called "regimes of care," provide an explanation for the IAAF’s justification of the implementation of these rules. These "regimes of care" perpetuate gender and race inequalities because under the pretext of care, athletes from the Global South are sent to the Global North, in this case, to France (a country that has a repressive migration policy) for the purpose of "treating"/"saving" said athletes, whose countries’ medical frameworks would not be able to effectively treat hormonal "pathologies," as they are defined in western medicine, even though such hormonal "pathologies" present no danger whatsoever to the individuals who are affected by them.

The article is interesting in that it shows the racial and geographical constructs of athletes who are accused of not fitting into the expected body standards of femininity.

However, the article does not directly address trans athletes, since it is about cis intersex women.

We can take away the following key points (or at least draw some parallels) from the article: that the regulations that trans women are subjected to form part of the history of the frameworks used to exercise control over women’s bodies which are imposed by the medical profession. Such frameworks are based on gender and racial stereotypes that have important ramifications when it comes to athletes’ health and well-being. And above all, that no consideration is given to the real lived experiences of the athletes who are subjected to the regulations, and who come from marginalized and oppressed populations in terms of gender and race. Furthermore, the dialogue surrounding testosterone is not based on any tangible medical evidence. This is demonstrated by the examples that are mobilized by the member of the IAAF medical commission, which were analyzed by Karkazis and Jordan Young. The painting of La maja desnuda, by Goya, (1797-1800) is used to represent the ideal woman: a white woman, non-athletic, naked, and lying down. The ideal man is represented by a black bodybuilder who is known to have doped for more than 20 years.

29: Hormone-based regulations put all athletes at risk

"T talk" deflects attention from social structures and institutions, attributing the result of competitions completely to individual bodies, as though these bodies have developed, trained, and ultimately competed in some socially-neutral vacuum.
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Year</th>
<th>Type of Article</th>
<th>Cited by Jones et al. (2017)</th>
<th>Evidence of Physical Advantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Richardson, A., & Chen, M.</td>
<td>2020</td>
<td>Response to the literature review by Jones et al. (2017)</td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td>Jones, B.A., Arcus, J., Bouman, W.P., & Haycraft, E.</td>
<td>2020</td>
<td>Response to a critique of their literature review, which was published in 2017</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

The IAAF links doping to naturally high testosterone levels.

This article is a short response to the literature review by Jones et al. (2017). The authors wish to challenge two points: the fact that trans women would not have a physical advantage over cisgender women and, the failure to consider the usage of “inclusion policies” (their term) when it comes to sports requiring specific physical qualities such as size and strength.

Transgender female advantage: To support their hypothesis that trans women have a physical advantage over cis women, the authors take the case of Laurel Hubbard (weightlifting), comparing her “pre-transition” (their term) and “post-transition” (their term) performance, noting that the difference is only 7%. They also highlight the fact that she would benefit from her years of training in the men’s category. This point is accompanied by a paragraph citing various trans women who have appeared in the media.

Transgender sporting policies: The authors claim that Jones et al. (2017) did not consider strength sports such as weightlifting, bodybuilding, MMA, wrestling, judo, rugby, or rock climbing (among others cited). The next paragraph cites the USA Powerlifting (USAPL) rulebook that would have provided evidence of the physical advantage of trans women. They end by citing Harper’s (2015) study, saying that it proves nothing since it is not about sports (5k to 42k) that require physical abilities such as strength or speed.

This article is a short response to the literature review by Jones et al. (2017). The authors wish to challenge two points: the fact that trans women would not have a physical advantage over cisgender women and, the failure to consider the usage of “inclusion policies” (their term) when it comes to sports requiring specific physical qualities such as size and strength.

Transgender female advantage: To support their hypothesis that trans women have a physical advantage over cis women, the authors take the case of Laurel Hubbard (weightlifting), comparing her “pre-transition” (their term) and “post-transition” (their term) performance, noting that the difference is only 7%. They also highlight the fact that she would benefit from her years of training in the men’s category. This point is accompanied by a paragraph citing various trans women who have appeared in the media.

Transgender sporting policies: The authors claim that Jones et al. (2017) did not consider strength sports such as weightlifting, bodybuilding, MMA, wrestling, judo, rugby, or rock climbing (among others cited). The next paragraph cites the USA Powerlifting (USAPL) rulebook that would have provided evidence of the physical advantage of trans women. They end by citing Harper’s (2015) study, saying that it proves nothing since it is not about sports (5k to 42k) that require physical abilities such as strength or speed.

This article is a short response to the literature review by Jones et al. (2017). The authors wish to challenge two points: the fact that trans women would not have a physical advantage over cisgender women and, the failure to consider the usage of “inclusion policies” (their term) when it comes to sports requiring specific physical qualities such as size and strength.

Transgender female advantage: To support their hypothesis that trans women have a physical advantage over cis women, the authors take the case of Laurel Hubbard (weightlifting), comparing her “pre-transition” (their term) and “post-transition” (their term) performance, noting that the difference is only 7%. They also highlight the fact that she would benefit from her years of training in the men’s category. This point is accompanied by a paragraph citing various trans women who have appeared in the media.

Transgender sporting policies: The authors claim that Jones et al. (2017) did not consider strength sports such as weightlifting, bodybuilding, MMA, wrestling, judo, rugby, or rock climbing (among others cited). The next paragraph cites the USA Powerlifting (USAPL) rulebook that would have provided evidence of the physical advantage of trans women. They end by citing Harper’s (2015) study, saying that it proves nothing since it is not about sports (5k to 42k) that require physical abilities such as strength or speed.

This article is a short response to the literature review by Jones et al. (2017). The authors wish to challenge two points: the fact that trans women would not have a physical advantage over cisgender women and, the failure to consider the usage of “inclusion policies” (their term) when it comes to sports requiring specific physical qualities such as size and strength.

Transgender female advantage: To support their hypothesis that trans women have a physical advantage over cis women, the authors take the case of Laurel Hubbard (weightlifting), comparing her “pre-transition” (their term) and “post-transition” (their term) performance, noting that the difference is only 7%. They also highlight the fact that she would benefit from her years of training in the men’s category. This point is accompanied by a paragraph citing various trans women who have appeared in the media.

Transgender sporting policies: The authors claim that Jones et al. (2017) did not consider strength sports such as weightlifting, bodybuilding, MMA, wrestling, judo, rugby, or rock climbing (among others cited). The next paragraph cites the USA Powerlifting (USAPL) rulebook that would have provided evidence of the physical advantage of trans women. They end by citing Harper’s (2015) study, saying that it proves nothing since it is not about sports (5k to 42k) that require physical abilities such as strength or speed.

This article is a short response to the literature review by Jones et al. (2017). The authors wish to challenge two points: the fact that trans women would not have a physical advantage over cisgender women and, the failure to consider the usage of “inclusion policies” (their term) when it comes to sports requiring specific physical qualities such as size and strength.

Transgender female advantage: To support their hypothesis that trans women have a physical advantage over cis women, the authors take the case of Laurel Hubbard (weightlifting), comparing her “pre-transition” (their term) and “post-transition” (their term) performance, noting that the difference is only 7%. They also highlight the fact that she would benefit from her years of training in the men’s category. This point is accompanied by a paragraph citing various trans women who have appeared in the media.

Transgender sporting policies: The authors claim that Jones et al. (2017) did not consider strength sports such as weightlifting, bodybuilding, MMA, wrestling, judo, rugby, or rock climbing (among others cited). The next paragraph cites the USA Powerlifting (USAPL) rulebook that would have provided evidence of the physical advantage of trans women. They end by citing Harper’s (2015) study, saying that it proves nothing since it is not about sports (5k to 42k) that require physical abilities such as strength or speed.

This article is a short response to the literature review by Jones et al. (2017). The authors wish to challenge two points: the fact that trans women would not have a physical advantage over cisgender women and, the failure to consider the usage of “inclusion policies” (their term) when it comes to sports requiring specific physical qualities such as size and strength.

Transgender female advantage: To support their hypothesis that trans women have a physical advantage over cis women, the authors take the case of Laurel Hubbard (weightlifting), comparing her “pre-transition” (their term) and “post-transition” (their term) performance, noting that the difference is only 7%. They also highlight the fact that she would benefit from her years of training in the men’s category. This point is accompanied by a paragraph citing various trans women who have appeared in the media.

Transgender sporting policies: The authors claim that Jones et al. (2017) did not consider strength sports such as weightlifting, bodybuilding, MMA, wrestling, judo, rugby, or rock climbing (among others cited). The next paragraph cites the USA Powerlifting (USAPL) rulebook that would have provided evidence of the physical advantage of trans women. They end by citing Harper’s (2015) study, saying that it proves nothing since it is not about sports (5k to 42k) that require physical abilities such as strength or speed.

This article is a short response to the literature review by Jones et al. (2017). The authors wish to challenge two points: the fact that trans women would not have a physical advantage over cisgender women and, the failure to consider the usage of “inclusion policies” (their term) when it comes to sports requiring specific physical qualities such as size and strength.

Transgender female advantage: To support their hypothesis that trans women have a physical advantage over cis women, the authors take the case of Laurel Hubbard (weightlifting), comparing her “pre-transition” (their term) and “post-transition” (their term) performance, noting that the difference is only 7%. They also highlight the fact that she would benefit from her years of training in the men’s category. This point is accompanied by a paragraph citing various trans women who have appeared in the media.

Transgender sporting policies: The authors claim that Jones et al. (2017) did not consider strength sports such as weightlifting, bodybuilding, MMA, wrestling, judo, rugby, or rock climbing (among others cited). The next paragraph cites the USA Powerlifting (USAPL) rulebook that would have provided evidence of the physical advantage of trans women. They end by citing Harper’s (2015) study, saying that it proves nothing since it is not about sports (5k to 42k) that require physical abilities such as strength or speed.

This article is a short response to the literature review by Jones et al. (2017). The authors wish to challenge two points: the fact that trans women would not have a physical advantage over cisgender women and, the failure to consider the usage of “inclusion policies” (their term) when it comes to sports requiring specific physical qualities such as size and strength.

Transgender female advantage: To support their hypothesis that trans women have a physical advantage over cis women, the authors take the case of Laurel Hubbard (weightlifting), comparing her “pre-transition” (their term) and “post-transition” (their term) performance, noting that the difference is only 7%. They also highlight the fact that she would benefit from her years of training in the men’s category. This point is accompanied by a paragraph citing various trans women who have appeared in the media.

Transgender sporting policies: The authors claim that Jones et al. (2017) did not consider strength sports such as weightlifting, bodybuilding, MMA, wrestling, judo, rugby, or rock climbing (among others cited). The next paragraph cites the USA Powerlifting (USAPL) rulebook that would have provided evidence of the physical advantage of trans women. They end by citing Harper’s (2015) study, saying that it proves nothing since it is not about sports (5k to 42k) that require physical abilities such as strength or speed.
Transgender sport policy: Jones et al. raise the fact that "outdated" (p.1862) studies on the differences between cis men and cis women are used in Richardson and Chen's (2020) response to prove that trans women have a physical advantage. Jones et al. also point out that there are already competitions whose categories are not based on sex/gender but rather on athletic ability, such as the Limitless Strength Competition in the UK. In response to Richardson and Chen's (2020) proposal to create sport categories specifically for trans people to compete in, Jones et al. conclude by explaining that there is no scientific evidence of this approach being useful and importantly, that trans people do not want to compete in a separate category.

<table>
<thead>
<tr>
<th>Ljungqvist, A.</th>
<th>2018</th>
<th>Document which chronologically surveys the implementation of the different IOC regulations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>No. Details: IOC member from 1994 to 2012, + IAAF and World Anti-Doping Agency (WADA) member</td>
</tr>
</tbody>
</table>
| | | In this article, the author looks back chronologically at the evolution of IOC regulations regarding intersex and trans athletes. He situates the regulations for trans athletes in the history of the femininity testing in sports competitions. He posits that the key to athletic performance is the difference in testosterone levels between women and men. He refers to testosterone as the male hormone. He argues that the existence of these systematic regulations since the 1960s is due to the need to protect the female category from intruders (= men who would come to compete in this category in order to win medals). He explains that the 2003 IOC rule emerged following a request from a national Olympic federation regarding the "case" of a trans athlete. He mentions that opponents complained to this federation. Following Caster Semenya's victory in 2009, the IOC brought together biomedical researchers to establish a regulation on her presence. These discussions lead the IOC to stipulate that the gender bi-categorization of competitions must absolutely be respected to "protect" all sportswomen. In 2011, the IOC publishes the regulation on hyperandrogenic athletes. The author refers to the ruling initiated by Dutee Chand at the Court of Arbitration for Sport (CAS) in which the IAAF was given 2 years to prove that athletes with a higher-than-average testosterone level than other women have a physical advantage. The author does not seem to doubt (article published online in Oct 2017) that the IAAF will have evidence to put forward. The last paragraph seems alarmist in that the author calls on the sports world to establish and impose regulations to protect the female category, even in

This article puts forward different points: testosterone is the key to performance in sports, it is necessary to protect the female category from intruders (men), that hyperandrogenic athletes have a physical advantage, that there is supporting evidence. However, there are no articles supporting these arguments in the bibliography.

This article demonstrates the trans misogynous preconceptions (Serano, 2007) that sports federations rely on. The idea that a trans woman would actually be a man (paragraph 1), the idea that trans women could use their femininity to infiltrate (cis) women's spaces. As well as on sexist presuppositions that (cis) women would need to be protected and therefore that the "women's" category must remain inferior to the "men's" category (last paragraph). Thus, the regulations are established not only on the basis of biological data (which are, moreover, not exempt from biases and power relationships) but are also based on discriminatory preconceptions.
countries that allow people to transition medically and legally.

In this article, the authors present a critique of the 2011 IAAF and IOC regulations and the responses that have come through social science research. In the first paragraphs, the authors review the story of María José Martínez-Patino, who was excluded from athletic competitions after a chromosomal test. In this context, the athlete was examined under the microscope by doctors and was the object of an important media enquiry that questioned her belonging to the female category. This situation had negative repercussions on her sporting career and on her life.

The new policy is not about proving sex: The new policy is not about who is a man and who is a woman, but about medically defining the boundaries of the female category. The regulations were based on the idea of sexual dimorphism. However, the data show that the female and male categories are not biologically mutually exclusive. Chromosomal testing is not effective, since women can have an XY karyotype. The authors use the case of Ratjen at the 1936 Olympics to show that men do not necessarily perform better than women.

The new policy does not aim to disqualify athletes with intersex conditions: DSD do not necessarily give rise to a physical advantage. E.g., those experiencing androgen insensitivity. Such women will not be excluded from competitions even if they have a higher-than-average testosterone level.

The problem with grouping: The authors are opposed to the creation of a third sport class. Doing so would be even more detrimental to the athletes involved. Stereotypes influence athletes' performance. It is expected that female athletes will perform less well, so everything is done to ensure that this is the case. To break this rule is to risk being excluded from competitions.

Conclusion: Athletes affected by the rules must be given a voice in this debate.

The main point of this article is that the authors highlight the negative repercussions of such regulations on the living conditions of the sportswomen who are targeted by them.

On page 113, the case of Ratjen at the 1936 Olympics is presented but without putting it in perspective with the socio-historical context or analytical precautions as Bohun (2012) does.

On page 114, the authors put forward a link made between homosexuality and congenital adrenal hyperplasia in women. In an article, Michal Raz (2016) offers a proposed response to this result: “As for the results published on the sexual orientation of these individuals, no conclusion seems to be definitive, with rates of heterosexuality or homosexuality varying widely across the board, likely reflecting differences in the methodologies of these studies. In any case, some publications continue to refer to homosexuality as a "sexual orientation disorder" (Bouvattier, 2007), perpetuating a pathologizing viewpoint.” Raz, M. (2016).

Finally, the conclusion that can be drawn from this type of article is that studies could be carried out on other body differences (e.g. short vs. tall). However, in a patriarchal and racist society, certain data are put forward for comparison between groups that are considered homogeneous and natural by the dominant group while in fact, this stems from a social relationship of domination.

In the first paragraphs, the authors review the story of María José Martínez-Patino, who was excluded from athletic competitions after a chromosomal test. In this context, the athlete was examined under the microscope by doctors and was the object of an important media enquiry that questioned her belonging to the female category. This situation had negative repercussions on her sporting career and on her life.

The new policy is not about proving sex: The new policy is not about who is a man and who is a woman, but about medically defining the boundaries of the female category. The regulations were based on the idea of sexual dimorphism. However, the data show that the female and male categories are not biologically mutually exclusive. Chromosomal testing is not effective, since women can have an XY karyotype. The authors use the case of Ratjen at the 1936 Olympics to show that men do not necessarily perform better than women.

The new policy does not aim to disqualify athletes with intersex conditions: DSD do not necessarily give rise to a physical advantage. E.g., those experiencing androgen insensitivity. Such women will not be excluded from competitions even if they have a higher-than-average testosterone level.

The problem with grouping: The authors are opposed to the creation of a third sport class. Doing so would be even more detrimental to the athletes involved. Stereotypes influence athletes' performance. It is expected that female athletes will perform less well, so everything is done to ensure that this is the case. To break this rule is to risk being excluded from competitions.

Conclusion: Athletes affected by the rules must be given a voice in this debate.

The main point of this article is that the authors highlight the negative repercussions of such regulations on the living conditions of the sportswomen who are targeted by them.

On page 113, the case of Ratjen at the 1936 Olympics is presented but without putting it in perspective with the socio-historical context or analytical precautions as Bohun (2012) does.

On page 114, the authors put forward a link made between homosexuality and congenital adrenal hyperplasia in women. In an article, Michal Raz (2016) offers a proposed response to this result: “As for the results published on the sexual orientation of these individuals, no conclusion seems to be definitive, with rates of heterosexuality or homosexuality varying widely across the board, likely reflecting differences in the methodologies of these studies. In any case, some publications continue to refer to homosexuality as a "sexual orientation disorder" (Bouvattier, 2007), perpetuating a pathologizing viewpoint.” Raz, M. (2016).

Finally, the conclusion that can be drawn from this type of article is that studies could be carried out on other body differences (e.g. short vs. tall). However, in a patriarchal and racist society, certain data are put forward for comparison between groups that are considered homogeneous and natural by the dominant group while in fact, this stems from a social relationship of domination.
as early as 6 months into their HRT. These studies therefore support the IOC regulations that allow trans women to compete in the women’s category provided they are on hormone therapy. However, the authors also point out the lack of data on high-level trans sportspersons. The only biology study conducted to date with trans athletes was conducted with trans women at the amateur level (Harper, 2015). The authors therefore call for more research on the physical and physiological conditions of trans athletes compared to cis women.

Sutherland, M. A., Wassersug, R. J., & Rosenberg, K. R. 2017 Does not use their own data Discussion of published studies to draw their own conclusions about trans women No

Intro: IOC regulations in 2004 and in 2016.

Olympic history: Traces the history of the femininity test in sports competitions by fixing Ratjen’s participation in the 1936 Olympic Games as a starting point and then highlighting the chromosomal test (Bar body and PCR-SRY), in use since 1968. Then, the problem of chromosomal testing for Complete Androgen Insensitivity Syndrome (CAIS) is discussed.

Transsexuals in sports: Starting with the 2004 regulations. The authors postulate that trans women have a biological advantage over cis women even after HRT due to their skeletal/bone structure.

The osteological advantage: The authors state that the human skeleton cannot be modified by transitioning, which means that trans women have a physical advantage. The physical advantage that men have would be due to testosterone giving them a more imposing skeleton.

Specific osteology and biomechanical advantage: the case of the knee: The authors postulate that one of the key differences between (cis) men and (cis) women is the q-angle (“the angle at which the quadriceps muscle meets the patella compared to the line formed by the ligament connecting the patella to the tibia” physicaltech.com). This difference in angle would have influence in sports such as football/soccer or cycling.

The case of the elbow: In this part, the authors are interested in the carrying angle (the physiological valgus of the elbow = the same type of calculation but for the elbow). The authors postulate that this angle is a dimorphic feature even though they admit that this hypothesis has not been empirically verified and even though no studies have been carried out on the correlation between the accuracy of a shot and this angle.

Page 174: the authors postulate that the sporting federations’ fear of seeing a man compete in the female category dates back to the Olympic Games of 1936, which saw Ratjen compete: False, if you refer to A. Bohuon and C. Louveau on the “process of virilization,” which sportswomen were required to undergo even before 1936. In particular, the case of Violette Morris can be quoted. Violette was excluded from the FSFSF (Fédération des sociétés féminines sportives de France) with a lawsuit in 1930 for wearing “masculine clothes.”

Page 175: The authors point to a study that shows that women with CAIS have an average height of 1.70m, while women without CAIS have an average height of 1.65m (stating that the women with CAIS would not have a physical advantage). However, in Danilovic’s (2007) study, for example, women with CAIS range in height from 1.54m to 1.80m, so creating an average over such a small number of women seems like a flawed approach, especially without looking at the standard deviation. The study cited by Sutherland et al. (2017) does not specify the number of women with CAIS who were counted. (Danilovic, D. L. S., Correa, P. H. S., Costa, E. M. F., Melo, K. F. S., Mendonça, B. B., & Arnhold, I. J. P. (2007)). Height and bone mineral density in androgen insensitivity syndrome with mutations in the androgen receptor gene. Osteoporosis International, 18(3), 369-374).

In the article, the authors put forward the variable of height as one of the physical advantages that trans women possess, especially in volleyball. However, in a total contradiction, on page 177, it is stated that if you take the average height of all the volleyball teams in the Olympic Games, (with one exception since 1968) it has never been the tallest team that has won.

Terminology: Transsexual, biological males, genotypically male, MTF transsexuals, osteological males, human female,

**Correlation “transsexual” and “transhumanist”

Deadname Renée Richards.
The pelvic: The authors postulate that this feature is also dimorphic even though they admit that studies have failed to show a correlation between better motor performance and pelvic size. It is suggested that the advantage for men would be that their average pelvic shape would be correlated with fewer injuries. Fairness in the field: The authors propose to implement osteological and biomechanical tests to classify athletes according to this data in order to ensure fairness in sport. Transsexuals as pioneer transhumanists: The authors compare gender transition to transhumanism and call for vigilance regarding the various physical modifications that could be made by athletes to improve their performance.

Page 179: The authors argue that the high frequency of knee injuries in women is linked to the q-angle. However, they do not take into account the differences between men and women with regard to the way in which they compete in sports (the condition of the playing surface, the quality and number of training sessions completed, shortages of medical staff and follow-ups, lack of access to weight rooms, etc.). The problem is that gender is the variable that is being studied when looking at health. Living conditions are not taken into account.

Page 186: The authors propose that athletes should compete in categories according to their bone/skeletal structure, but they don’t take into account the fact that athletes adapt their physical abilities according to their morphology. Furthermore, this suggestion stands in contradiction to their postulate that bones/skeletons are dimorphic in nature. If this were the case, why suggest separating competitors into categories in accordance with their bone structure? This proves that the aim of the study is just to hide the authors’ real agenda, which is a desire to force trans women to compete in the male category (without explicitly saying that this is the motive and without tangible medical evidence, since the studies cited were not carried out with trans athletes).

In addition, this study: Men and women have similar Q angles: a clinical and trigonometric evaluation (Grelsamer, R. P., Dubey, A., & Weinstein, C. H. (2005)) is not cited in the paper; however, it shows that when comparing men and women of the same height, a similar q-angle is obtained. Thus, the difference is to do with the person’s height rather than their sex.

It is also worth noting that the example of the Olympic shooting event, which was originally mixed, was separated into non-comparable categories by sex (not the same distances) following the victory of women in this event. This calls into question the physical advantage argument.

Another overlooked fact is that bone data are the result of both biological and sociological factors as Anne Fausto-Sterling shows, “Fausto-Sterlin’s (2005) account of bone density provides a clear
<table>
<thead>
<tr>
<th>Authors</th>
<th>Year</th>
<th>Title</th>
<th>Methodology</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. L. Paule Krane, V., Klein, A., Tannenbaum & Bekker</td>
<td>2018</td>
<td>Commentary on the 2018 IAAF Regulations</td>
<td>No</td>
<td>This article offers a commentary on the 2018 IAAF regulations and the medical supervision of the women's category. The authors mention the highest percentage correlation between testosterone levels and performance is seen in the hammer throw and pole vault events. However, the authors do not explicitly state that these disciplines are not covered by the IAAF regulations.</td>
</tr>
<tr>
<td>Klein, A., Krane, V., & Paule-Koba, A. L.</td>
<td>2018</td>
<td>Qualitative analysis. N = 1 (trans man)</td>
<td>No</td>
<td>This article focuses on the first year of a trans athlete's transition. The article mentions the psychological effect of taking hormones, nor do the authors fail to take into account both the social effects of taking testosterone and the psychological effect of taking hormones, nor do they consider how these two factors may also be interdependent. Thus, when the participant mentions being able to pass and that he is beginning to feel better mentally, we should consider this not only in terms of biology but also in terms of social factors. This article shows that even in a space where coaches and other athletes are not directly rejecting his transition, the athlete, Bryan, faces consequences for the athletes. Terminology: This article does not refer to trans people.</td>
</tr>
</tbody>
</table>
In this article, Madeleine Pape demonstrates that sports institutions operate in line with the following principle: biological sex precedes social gender. She describes sports governing bodies as gender-determining institutions. That is, spaces where the notions of sex/gender are contested, debated, and defined in ways that reinforce the gender system, the differential valence of the sexes (not in these terms), and heteronormativity. Thus, the author analyzes how the categories of sex/gender/sexuality were destabilized by the athlete and then reified by the institutions during the trial (Dutee Chand vs the IAAF).

The IAAF’s regulations form part of a history of exercising control over women’s bodies and over women’s performance. Indeed, in the gender system, women must be inferior to men in order for men to maintain their dominant position in the hierarchy. For this reason, not only have rules been and continue to be put in place, but various tools for maintaining the hierarchy exist, such as the sexualization of women’s bodies and the promotion of heterosexuality, or the lack of remuneration and financial means granted to women.

There is a hierarchy when it comes to the consideration and valuation of scientific knowledge. Studies conducted by life scientists are deemed more valid than studies conducted in the social sciences. The results of such life growth, cessation of bleeding, facial hair growth, hair growth changes, a small increase in muscle mass, and lower fat distribution.

In addition, the participant announces that he will stop playing collegiate level sports at university because of the obstacles he encountered during his transition. He explains that giving up his sport (running) will allow him to do more weight training and focus on his transition. He talks about the sacrifice he has to make, saying that he feels the need to choose between his two identities: being trans and being an athlete.

Transitioning is the process during which a transgender person alters their gender expression to be consistent with their gender identity. This may include changing the type of clothes they wear, restyling their hair, and/or changing their name and preferred pronouns. Some transgender people may choose to alter their bodies through hormone therapy during their transition and some may have surgical interventions. There is not a single way to transition; instead, there are multiple possibilities to transition and various ways to be and become one’s gender. Transitioning athletes will develop the path most suited for them and that which best portrays and leads to comfortable sex and gender presentation.

In the CAS ruling of the Dutee Chand vs IAAF case, the court decided that Dutee Chand could not compete as part of the women’s team (as per NCAA rules), but he was not immediately integrated to the men’s team either. From the beginning of his hormonal treatment, he is no longer allowed to compete as part of the women’s team (as per NCAA rules), but he was not immediately integrated to the men’s team either.

Many obstacles which eventually lead him to stop competing in sport at university.

Bryan outlines and explains the difficulties he faces when trying to continue competing in sports during his transition. For example, not being able to access a mastectomy is a hindrance which limits his motivation and involvement in sport. As a result, he makes the decision to stop competing. He explains that giving up his sport (running) will allow him to do more weight training and focus on his transition. He talks about the sacrifice he has to make, saying that he feels the need to choose between his two identities: being trans and being an athlete.

Participant: 20 years old, trans man, pronouns he/him, track and field - cross country, D1 student athlete (USA collegiate). From the beginning of his hormonal treatment, he is no longer allowed to compete as part of the women’s team (as per NCAA rules), but he was not immediately integrated to the men’s team either.

In the CAS ruling of the Dutee Chand vs IAAF case, the court decided that Dutee Chand could not compete as part of the women’s team (as per NCAA rules), but he was not immediately integrated to the men’s team either. From the beginning of his hormonal treatment, he is no longer allowed to compete as part of the women’s team (as per NCAA rules), but he was not immediately integrated to the men’s team either.

Two key takeaways can be drawn from this article: the fact that (at all costs) the sports institutions try to maintain the essentialist postulate that sex precedes gender and that their ability to maintain their domination on the basis of the rules is dependent on the organization of hierarchical scientific knowledge.

The IAAF’s regulations form part of a history of exercising control over women’s bodies and over women’s performance. Indeed, in the gender system, women must be inferior to men in order for men to maintain their dominant position in the hierarchy. For this reason, not only have rules been and continue to be put in place, but various tools for maintaining the hierarchy exist, such as the sexualization of women’s bodies and the promotion of heterosexuality, or the lack of remuneration and financial means granted to women.

There is a hierarchy when it comes to the consideration and valuation of scientific knowledge. Studies conducted by life scientists are deemed more valid than studies conducted in the social sciences. The results of such life growth, cessation of bleeding, facial hair growth, hair growth changes, a small increase in muscle mass, and lower fat distribution.

In addition, the participant announces that he will stop playing collegiate level sports at university because of the obstacles he encountered during his transition. He explains that giving up his sport (running) will allow him to do more weight training and focus on his transition. He talks about the sacrifice he has to make, saying that he feels the need to choose between his two identities: being trans and being an athlete.
science studies are given more weight. The gender system is thus perpetuated, since men dominate in the life sciences while many social scientists are women.

Dutee Chand was asked to not only prove that the IAAF studies were wrong but also to scientifically prove that testosterone is not a direct indicator of athletic performance. Dutee Chand’s team brought up the argument of the complexity of gender difference and the causality of sports performance. Meanwhile, the IAAF came up with their own investigations. The arguments put forward by Dutee Chand’s team were considered by the CAS panel to be nothing but unproven assumptions, speculation, and hasty conclusions. The social science researchers involved were discredited as merely over-interpreting medical data which do not fall within their field of expertise. All this took place despite the fact that a member of the IAAF team was found to have published data and an analysis on testosterone and sports performance that turned out to be false (admitted by the researcher). K. Karkazis’ articles on bioethics were considered to be “sociological opinions” not resulting from real clinical knowledge.

The IAAF arrived at the trial with a material advantage (and therefore a scientific advantage) because of its ability to finance research on its own terms. Compared to Dutee Chand, the IAAF also has incomparable human resources as a result of the sheer amount of data that they hold on their competitions (especially through the World Anti-Doping Agency) and which they have access to.

The IAAF’s strategy was to say that they do not seek to find out who is a man and who is a woman but rather that they seek to make a distinction between women in terms of access to sport. However, the author highlights the fact that the IAAF has never sought to medically supervise the male category. This strategy allowed the IAAF to transform the debate and the framework, making it seem purely medical. Additionally, an IAAF witness defended the regulation by stating that it would keep men out of the women’s category. This suggests the real motives behind the regulation. Overemphasizing the medical/health aspect of a supposed pathology is simply a strategy. Dutee Chand has been
subjected to a lot of violence from the medical institutions within the framework of this regulation. This shows that the well-being of the women who are subjected to this regulation is not taken into account.

Drawing upon regulation as thought has the effect of reinforcing the idea that "normal" women would be weaker, more vulnerable and more in need of protection than women who fall outside of this framework. Pape insists upon looking at regulations not only from a biological perspective but also from political and social perspectives. This framework of analysis allows us to highlight the way in which the same dialogues and myths about a social fact are reconfigured with new biological data to replace the old ones that have been proven to be obsolete.

This article highlights the limitations of taking the sex variable into account in medical research. It is clear here that some research allows itself to make generalizations about differences between men and women based on a single variable that is often incomplete and erroneous. There is value in developing a broader understanding of sex/gender in biomedical research to avoid these pitfalls.

Terminology: does not refer to trans people but refers to the "cis-normative gender binary"

320: Limitations of the designation of the categories "male" and "female"

"We make use of the labels "male" or "female" as though we are stating a singular biological reality, but really we are invoking an entire constellation of characteristics that, at best, have a reasonably strong correlation with one another. In doing so, we are engaging in "interested instances of power ... with real material consequences" (Barad 1996, 182) for how we understand the impact of sex on health."

320-321: Impact of gender stereotypes on research

"The upshot is that in treating sex as a unitary dichotomous variable and comparing females and males, we are allowing stereotyped thinking about sex and gender to substitute for the mechanistic understanding that is presumably the goal of experimental research, doing a disservice to people of all genders with respect to our understanding of biology and health."

<table>
<thead>
<tr>
<th>Ritz, S. A</th>
<th>2017</th>
<th>Theoretical discussion, sex variable and biomedical research</th>
<th>No</th>
</tr>
</thead>
</table>
| In this article, the author explores the limitations of biomedical research that attempts to take into account the variable of sex without questioning it or worrying about the consequences of such hasty generalizations. The definitions given in biomedical sciences of the notions of sex/gender are limited to an understanding of sex as being based on biological data and of gender as being based on social data. However, research in gender studies, in particular the feminist critique of science by Anne Fausto-Sterling, quoted here, has shown that sex is dependent on gender and that the gender system modifies so-called biological sex. The significant social aspect presents itself as one of the major limitations associated with trying to draw conclusions about sex/gender based on the observation of cells.

The conditions under which cells develop within the laboratory environment differ considerably from the conditions of development that are actually present in a sexually differentiated and social body. 1) Obtaining cells from human tissue is complicated. The number of cells extracted tends to be reliable. Beyond the sex variable, there are also many other characteristics that come into play and these also need to be taken into account. 2) It would be better to talk about what type of sex we are talking about (i.e., whether we are talking about sex in terms of gonads, genitals, chromosomes) rather than drawing conclusions about an entire category from weak and incomplete data. 3) The
production of hormones within the endocrine system can be dependent on the social context, on physiological and reproductive functions, or even on age. The levels of hormone production thus vary according to the internal and external context. In the laboratory, cells are isolated from this social, hormonal, nervous, etc. context. The reactions we see in the lab are therefore distinct depending on whether we are looking at an in vitro situation or an in vivo situation. When men and women are separated under experimental conditions, the variable of sex is taken as a whole without taking into account its complexity and the different dynamics that constitute it. A problem also arises in that when we look at one component of sex, we assume that all the others are aligned. Moreover, the biological categories attributed to men and women are not dimorphic. The conclusions drawn cannot be generalized; they are, at best, trends of observed correlations that do not take into account every factor. The impact of social factors is very frequently neglected.

We must recognize that all knowledge is situated, constructed, and biased. Even if the cells that are taken come from donors whose sex is known, this fact does not constitute a functional variable in the research. For example, some research examines the effect of estrogen on cells as a female variable, even though all bodies produce estrogen. It is not possible to isolate the biological and the social when one influences the other and vice versa.

Sullivan, C. F 2011 Theoretical discussion of rules and regulations, supervision of the bodies of sportswomen No

In this article, the author reviews the main regulations that have marked the history of the medical supervision of women’s bodies (cis, trans and/or intersex) by sports governing bodies.

The concept is based on the preconceived myth that all men have a physical advantage over all women (hegemonic masculinity). To maintain this system, women must remain inferior to men at all costs.

Different markers have been used throughout history to identify the sex of sportswomen (genitals, chromosomes, hormones). Each test has been built on the assumption of unproven sexual dimorphism.

Systematic gender testing is a product of the Cold War; the first test of this kind was administered in

The author examines the regulations governing trans people's participation in sports (with a focus on trans women in particular). She situates this within the framework of the history of the femininity test.

She highlights the limitations of these tests and the disastrous consequences that such tests have had on sportswomen.

Page 409: The author highlights the lack of consideration in the literature of the increased risk of injury that trans people and particularly trans women may experience: "Trans athletes who carry "male" skeletal structure and height on "female" musculature have been found to be more prone to injury (Carlson, 2005)."

This is one element from a response to the Sutherland (2017) article.

Terminology: Transsexual or transgender
1966 at the European Athletics Championships. All participating athletes were required to undergo a genital examination that was humiliating and degrading. This was followed by genetic tests that proved to be non-functional, the sports world learned of the existence of intersex conditions. Maria Jose Martinez Patino, who had obtained a certificate of femininity during the first phase of testing, was outed as being intersex following a chromosomal test. Her certificate of femininity was subsequently revoked as a result. The fact that she finally presented as having an insensitivity to androgens despite her karyotype led the federation to readmit her 3 years later and to permit her to compete. However, she was never able to regain her sporting level due to the violence she experienced at the hands of the sporting and medical institutions which forced her to stay away from the field.

The 1990 recommendations to stop femininity testing were not accepted. A second phase of chromosomal testing was introduced. As of the year 2000, these femininity tests are no longer systematic. They are carried out on the basis of doubts about someone’s sex based on visual examination; therefore, their usage is based on external criteria of cis-heterosexist femininity.

The author takes the 2003 Stockholm consensus as a starting point and shows that factors such as whether or not a given country’s legal system permits a person to change their civil status, how easy/difficult it is to access hormones, and how easy/difficult it is to access surgery all depend on the social and geographical position of the athletes. The 2-year transition period is arbitrary. Far from having a physical advantage, trans people may suffer injuries as a result of their transition and may experience health problems related to medical interventions.

The regulations in force now focus on hormonal levels under the impetus of the IAAF, which calls testosterone a "male" hormone, even though all bodies produce it.
<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Title</th>
<th>Analysis Methodology</th>
<th>Exclusion of Certain Knowledge</th>
<th>Term/Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pape, M.</td>
<td>2019</td>
<td>Theoretical discourse analysis</td>
<td>CAS ruling, Dutee Chand vs IAAF, discourse analysis</td>
<td>No</td>
<td>Exclusion of certain knowledge by sports governing bodies as a result of scientists’ restricted definition. This makes it impossible to see the power dynamics at stake in the creation, maintenance, and legitimization of the regulations. Instead of considering non-dimorphic findings as being part of the diversity of human bodies, these findings, when they manifest in women, are pathologized and excluded from the studies. When scientific investigations are proposed by both sides (e.g., Chand vs. IAAF) only peer-reviewed studies that provide a narrow definition of testosterone and its impact on the body are considered by the CAS panel; namely, studies conducted by life scientists. The production of knowledge is dependent on the material and symbolic resources that are allocated to it. Moreover, the CAS asked the IAAF to provide new evidence, siding with the IAAF despite having no evidence, and basing this ruling solely on a hunch that they would be able to provide supporting evidence. Conversely, Dutee Chand was not given the opportunity to come back with new evidence. This article demonstrates the hierarchy of knowledge at work in the legitimization/delegitimization of certain knowledge produced on testosterone. It’s worth noting that the IAAF regulations stand in line with the pathologization of women’s bodies. Indeed, the author demonstrates that when women’s bodies fall outside of the norm, such women are considered to be unwell. However, when men’s bodies fall outside of the norm, they are just considered as being out of the ordinary. The material and symbolic resources of knowledge production are to be taken into account in the evaluation and consideration of different knowledge that is published on the subject.</td>
</tr>
<tr>
<td>Travers, A.</td>
<td>2017</td>
<td>Introduction to their book Transgender athletes in competitive sport</td>
<td>/</td>
<td>/</td>
<td>Terminology: transgender women</td>
</tr>
<tr>
<td>Teetzel, S.</td>
<td>2017</td>
<td>Semi-structured interviews: n=10 (5 trans and 5 cis)</td>
<td>(PICO where relevant: Population, Intervention, Comparator, Outcome)</td>
<td>No</td>
<td>In this introduction, the authors develop the idea that trans athletes highlight the flaws of the sport categorization system by refusing to accept the categories determined by the sex/gender system. Caitlin Jenner is misgendered from the first paragraph. Santhini Soundarajan is referred to as a trans woman when at the time of the book’s publication it seems quite clear that she is a cis woman who has been excluded from competition because of her intersex condition.</td>
</tr>
</tbody>
</table>

Teetzel, S.

2017

Semi-structured interviews: n=10 (5 trans and 5 cis)

(PICO where relevant: Population, Intervention, Comparator, Outcome)

Population: 10 respondents: 5 cis women, 3 trans men, and 2 trans women.

Intervention: Semi-structured interviews about regulations governing the participation of trans athletes in sports.

No

In this article, the author interviews trans and cis athletes about the rules and regulations that govern trans athletes’ participation in sports. Uncertainty regarding where the science is at Participants struggle with delineating what would count as a physical advantage. The cis participants have almost no knowledge of the endocrine system. Unlike the trans participants, the cis participants had not previously thought about or been confronted with (and therefore not been forced to think about) the issues surrounding such regulations. The trans participants pointed to the lack of available data and the quasi-systematic exclusion of trans women. The notion of passing seems to be paramount in understanding the differences in access to sport.

There is little socio-demographic data on the participants, which limits the analysis. It may be difficult for active trans athletes to criticize the rules because of their position in the sport space.
<table>
<thead>
<tr>
<th>Year</th>
<th>Authors</th>
<th>Title</th>
<th>Type</th>
<th>Context</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017</td>
<td>Vilain, E., Ospina Betancurt, J., Bueno-Guerra, N., & Martinez-Patino, M-J.</td>
<td>Theoretical Article</td>
<td>Yes</td>
<td>The article provides a discussion/contextualization of some of the regulations that trans athletes are subjected to. There is a long history of men and their institutions banning women from taking part in sports competitions. E.g.: Marathon – women were banned from taking part in Marathon events at the Olympic Games for 84 years. The division between women and men in sport is a product of this history. The authors review the different phases of the femininity tests used in sports competitions. These tests are currently based on external criteria of femininity. For example, Caster Semenya was forced to undergo a femininity test based on doubts about her sex based on her "questionable visual appearance." A look at the IAAF and IOC regulations.</td>
<td>A commitment to some sort of fairness None of the participants agreed with the myth that some people would transition just to change their gender category in competitive sports. It is important to take into account class differences and the economic capital needed to take part in certain sports. This in itself is an advantage. Connecting inclusion and respect One way for trans athletes to protect themselves from transphobic and trans misogynous attacks is to seek refuge in the very rules that place medical limitations on their participation. In line with the results obtained, the author proposes moving away from the concept of fairness and toward the concept of respect. Thus, operating from a place of morality rather than basing decisions on regulations which imply a state of equality that doesn't even exist.</td>
</tr>
<tr>
<td>2010</td>
<td>Heggie, V.</td>
<td>Theoretical Article</td>
<td>Yes</td>
<td>The desire to maintain a framework for the female category predates the systematic implementation of gender tests/femininity tests and dates back to the beginning of the 20th century. During the 20th century, it was mainly FTM transitions (or the possibility of them) that worried sports organizations. This was the case for Zdenek Koubkova, Mark Weston, and Willy de Bruyn. There was a particular panic about the masculinization/virilization of women and the impact that sport would have on women. This</td>
<td></td>
</tr>
<tr>
<td>Author</td>
<td>Year</td>
<td>Paper Type</td>
<td>Subject</td>
<td>No/Yes</td>
<td>Argument</td>
</tr>
<tr>
<td>-------------------</td>
<td>------</td>
<td>------------</td>
<td>--------------------------------</td>
<td>--------</td>
<td>----------</td>
</tr>
<tr>
<td>Savulescu, A.</td>
<td>2012</td>
<td>Theoretical Paper</td>
<td>Historical summary – review of historical literature on perceptions of femininity in female athletes and/or female sports.</td>
<td>No</td>
<td>Policing of women’s bodies is significantly linked to cultural values of femininity. Racism and expectations around the cultural roles of women are a significant predictor of public concern around “fairness of sport” (i.e., athletes presenting more feminine or hiding “masculine” traits). Many of these controls were put in place and established for geo-political reasons (i.e., 1960’s cold war fears “Russian women superiority”). Author suggests that authorities rely on these subjective evaluations of aesthetic and visual assessments and no longer test systematically. Bias exists between North/South (white/black) and is used to control not only gender but the “non-hegemonic” femininity of eastern sportswomen.</td>
</tr>
<tr>
<td>Devine, J.</td>
<td>2019</td>
<td>Review</td>
<td>Gender, Steroids, and Fairness in Sport</td>
<td>No</td>
<td>Author concludes that there is a valid parallel between trans women participation in sport and that of individuals caught with doping violations returning to the sport prematurely or at all. Author does note that binary gender norms should be abandoned. Author presents idea of tolerable unfairness which is an interesting avenue to consider. Author examines values of fairness in respect to inclusivity. And has reasoned arguments against “trans” category in sport as well as forcing athletes to compete with birth gender. Author admits that his thesis is speculative but qualified (i.e., that even if the flawed basis is proven true it only establishes pro-tanto reasoning. (Reviewer disagrees that even partial “only to extent” pro-tanto reasoning exists.)</td>
</tr>
<tr>
<td>Foddy, B., & Savulescu, J.</td>
<td>2011</td>
<td>Theoretical Paper</td>
<td>Time to re-evaluate gender segregation in athletics?</td>
<td>No</td>
<td>Author contests that female athletes are justified in arguing for exclusion of other women based on a false premise that intersex or trans athletes are still “partially male.” Author suggests this could be overridden by relaxing restrictions on doping without addressing any of the potentially negative health consequences to athletes. Author (without proper citations) indicates that men perform at much higher levels of sport despite having access to same levels of equipment, training methods and both work equally hard at training. This point is reoccurring</td>
</tr>
</tbody>
</table>

Caster Semenya

Caster Semenya’s results were not world record breaking, and yet still of significant concern due to public perception. Interesting how comparative advantage is perceived based on the skill and/or ability of the competition. Are women’s sports only fair if competition is “less” than men’s sports?
<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Title</th>
<th>Methodology</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genel, M.</td>
<td>2017</td>
<td>Transgender Athletes: How Can They Be Accommodated?</td>
<td>Select review of existing literature</td>
<td>The author does not present their own conclusions; however they do mention some interesting details. 1) Many of these limit requirements face difficulty when assessing intersex individuals. 2) Likely there will be more trans athletes being included in interscholastic sport. The 10 nmol/L threshold is arbitrary and is not set on any population-level data by cis women. Further, it is not clear that individual variation within testosterone limits is a clear indication of performance advantage, let alone an "unfair" advantage in all sport (some evidence is present re: intersex sprinters). Recommend removal from list.</td>
</tr>
<tr>
<td>Gill-Peterson, J.</td>
<td>2014</td>
<td>The Technical Capacities of the Body: Assembling Race, Technology and Transgender</td>
<td>N/A</td>
<td>The author presents no valid qualitative or quantitative evidence nor draws any useful information on which to draft this report. Paper discusses competing ideologies of race/technology/ecological impacts and gender.</td>
</tr>
<tr>
<td>Handelsman, D., Hirschberg, A., & Bermon, S.</td>
<td>2018</td>
<td>Circulating Testosterone as the Hormonal Basis of Sex Differences in Athletic Performance</td>
<td>Unknown</td>
<td>Author argues that circulating testosterone is the most important marker for athletic advantage because of increasing muscle mass, strength, bone size, density, and hemoglobin. Androgen sensitivity for men with testes removed may play a significant moderating role. Author uses terminology like "bone size" as if this is different from height or frame size, neither of which are an established basis for discrimination. Further, it is not clear that individual variation within testosterone limits is a clear indication of performance advantage, let alone an "unfair" advantage in all sport (some evidence is present re: intersex sprinters). Literature is very dense and requires an additional reviewer to provide some more specific background and verification of points.</td>
</tr>
<tr>
<td>Hargreaves, J.</td>
<td>2012</td>
<td>Gender Equality in Olympic Sport</td>
<td>A review of women's participation in sports, no new evidence presented.</td>
<td>Sport has been an integral part of modernization in Gulf Cooperation Council (GCC) countries and in particular Arab women have been able to leverage this to become agents of change. Author argues that sport reflects and influences cultural values. Paper makes inaccurate conclusions on the initial performance advantages of men vs women. Limited scope "story"</td>
</tr>
<tr>
<td>Harper, J. et al.</td>
<td>2018</td>
<td>The Fluidity of Gender and Implications for the Biology of Inclusion for Transgender</td>
<td>Survey analysis</td>
<td>This may form a basis for inclusion of trans women and DSD women in sport irrespective of advantage. Representation matters not only to individual health but also to societal values changes as sport has an ability to change societal perceptions of equality. Can illustrate some of the epistemological challenges of the subject.</td>
</tr>
<tr>
<td>Author</td>
<td>Year</td>
<td>Title</td>
<td>Journal/Type</td>
<td>Ethics</td>
</tr>
<tr>
<td>--------------</td>
<td>------</td>
<td>--</td>
<td>-------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Henne, K.</td>
<td>2014</td>
<td>The “Science” of Fair Play in Sport: Gender and the Politics of Testing</td>
<td>Social and historical analysis of the issue.</td>
<td>No</td>
</tr>
<tr>
<td>Ingram, T.</td>
<td>2019</td>
<td>Transgender Policy in Sport, A Review of Current Policy and Commentary of the Challenges of Policy Creation</td>
<td>Review</td>
<td>No</td>
</tr>
<tr>
<td>Karkazis, K., Young, R.</td>
<td>2015</td>
<td>Debating a testosterone “sex gap”</td>
<td>Article, not peer reviewed.</td>
<td>No</td>
</tr>
<tr>
<td>Pike, J.</td>
<td>2021</td>
<td>Theoretical paper</td>
<td>A philosophical discussion of the relationship between concerns about safety, fairness, and inclusion in policy making about</td>
<td>No</td>
</tr>
</tbody>
</table>

The author shows that there exists a wide spectrum of opinion when it comes to testosterone regulation for both athletes with DSD and transwomen. This range includes individuals who are concerned with doping, and innate biological advantages, among others.

Women’s sport has a lengthy history of being categorized for cultural and political reasons. Author argues that gender verification is not only degrading to women, but it upholds myths around gender that form the basis for fair play. While testing has found results in gendered differences when it comes to sport, they are based on an idea that biological sex should align with culturally constructed myths of gender.

Fair play is rooted in values of amateurism which are no longer practically relevant for most sport. Similar arguments were put forth in questioning the validity of using prosthetics in sport (Pistorius).

Author looks at the history of trans participation of sport from high school to professional levels. There exists limited scientific data as it relates to performance advantages held by transwomen in sport, further women’s sport is poorly defined (other than being separate from men’s). Author suggests it is difficult to make inclusive policy that is fair but accessible. Author concludes that ongoing study and input is required by the medical and scientific community in the topic.

Paper references (table 3) strength gains and losses which are inaccurate. In particular, the decrease to muscle mass and strength is largely unknown and the interval stated should not be used to inform policy.

This article leads to an entire section which should relate to how policy should be constructed to enable it to be more equitably accessed, i.e., not having sport federations monitor their athletes, but rather have policies that are behind a physician’s recommendation. This raises issues of compliance.

The author states that DSD women and women with naturally occurring high levels of T must be included when considering what is fair in sport. And that a conclusion drawn decades ago was those "who were raised as girls and classify themselves as female should not be excluded from competition as women.” The basis for these arguments is social and ethical around how we classify human diversity.

The arguments made are logical, however as it relates to transgender individuals, we have no evidence to suggest that pre-treatment trans women have similar performance and strength profiles of DSD women or women with high T levels. As a result, there may be a basis for requiring some form of HRT, however this is still largely unresearched.

In the article The testosterone rule—constructing fairness in professional sport, Sudai (2017) refers to a study, commissioned by the IAAF and conducted at the 2011 IAAF Track and Field World Championships in Daegu, South Korea (referred to as the Daegu study) where the authors found that: “there is no clear scientific evidence proving that a high level of T is a significant determinant of performance in female sports.” (Bermon, S. et al., 2014).
the inclusion of trans women athletes into women's sport.

from the women's game in WR competitions is provided. An account of a maximally safe, maximally fair and maximally inclusive form of sex categorisation in sport is offered.

*None of the literature talks about performance advantages of men vs women in terms of either resourcing (men’s teams receive more resources for training, and training is optimized for male bodies (kin study available)). They also do not include any basis for permutation (instance rate and variation among edge scenarios – look at chess participation rates and its impact on performance rates (https://en.chessbase.com/post/what-gender-gap-in-chess) for elite athletes).
Table 12 Detailed review table of grey literature.

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Year</th>
<th>Kind of Study and/or Sample</th>
<th>Self-identified trans researcher(s) lead and/or trans research team members?</th>
<th>Key Conclusions</th>
<th>Key Reviewer Criticisms</th>
<th>Other notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>World Anti-Doping Agency (WADA)</td>
<td>2019</td>
<td>/</td>
<td>/</td>
<td>Regulations for obtaining a Therapeutic Use Exemption (TUE). Provides a detailed medical file and the rules of the sports federation.</td>
<td>3: Composition of the medical file 'All TUE applications must include a report from a healthcare professional who treats transgender individuals. This report must provide details of the athlete's medical history, including whether the athlete has undergone any partially or fully reversible physical therapy. This document should be accompanied by an endocrinology report from the endocrinologist who initiated the hormone therapy as well as a surgical report, if applicable. A full medical evaluation is required prior to the initiation of any treatment to determine the level of individual risk associated with the various treatment options.'</td>
<td></td>
</tr>
<tr>
<td>World Health Organization (WHO)</td>
<td>2019</td>
<td>/</td>
<td>/</td>
<td>The WHO takes a stand against the 2019 IAAF regulation that requires women to medically reduce their natural testosterone levels.</td>
<td>World Medical Association (WMA) President Statement: WMA President Dr. Leonid Edelman said: "We have strong reservations about the ethical validity of these regulations. They are based on weak evidence from a single study, which is currently being widely debated by the scientific community. They are also contrary to a number of key WMA ethical statements and declarations, and as such we are calling for their immediate withdrawal."</td>
<td></td>
</tr>
<tr>
<td>Canadian Centre for Ethics in Sport (CCES)</td>
<td>2016</td>
<td>/</td>
<td>/</td>
<td>Best practices (respect for the privacy of players, right to freedom choice of first name/pronoun/gender, providing information, the inclusiveness of rules, being attentive to the needs of trans athletes, training/prevention, access to toilets and lockers for all, proposing uniforms in accordance with gender expression). There is no tangible evidence about the effect of hormones. Recommendation: gender identity regulation. If other criteria apply, then it is up to the federation to prove legitimacy.</td>
<td>20: About hormone levels in regulations 'Unfortunately, neither the 2015 IOC consensus meeting nor the NCAA [National Collegiate Athletic Association] policy are grounded in direct scientific evidence of hormone levels having a significant long-term impact on athletes' performance. No research has been done in this regard.' 20: Elite recommendation "Based on this context and the evidence that is available, the Expert Working Group has reached the conclusion that transgender athletes should be able to participate according to the gender with which they identify, regardless of whether they have undergone hormonal treatment. If a sport organization can prove that hormonal treatment would be a reasonable and bona fide condition (meaning a required response to a genuine need) in order to create a level playing field in high performance sport, exceptions may apply."</td>
<td></td>
</tr>
<tr>
<td>Longman, J.</td>
<td>2016</td>
<td>Journalistic article, opinion piece</td>
<td>No</td>
<td>Argument: The discriminatory treatment of Caster Semenya.</td>
<td>Statement from the IAAF (P. Weiss) vs Semenya Statement by K. Karkazis on bias and stereotyping</td>
<td></td>
</tr>
</tbody>
</table>
Many champions have different physical advantages that are not subject to as much regulation, violence, and exclusion.

Example: Kenyan high-altitude training
Example: The body size comparison between K. Durant and B. Griner
Example: E. Mantyranta (who had a genetic mutation causing him to produce a higher-than-average amount of hemoglobin)

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Type of publication</th>
<th>Citations</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lenskyj, H. J.</td>
<td>2018</td>
<td>Theoretical article</td>
<td>No</td>
<td>In countries such as Canada and Australia there have been political debates about making sport exempt from having to comply with anti-discrimination laws. The media’s treatment of Laurel Hubbard makes it seem as if she made the decision to transition suddenly in a bid to win competitions. This demonstrates an ignorance of the lived experiences of trans people. "Objective science"? Biases that may appear in research: - Considering sport as a space that is reserved for men and masculinity, - Not taking into account biological and social constructs, - Assuming that testosterone gives athletes a physical advantage. Confusing causality with association.</td>
</tr>
<tr>
<td>Pieper, L.P.</td>
<td>2016</td>
<td>History book of the femininity test in sports competitions (Introduction)</td>
<td>No</td>
<td>The IOC often uses the concepts of gender and sex interchangeably, especially between the years 1968 and 2000. The discursive change between "sex testing" (1968 to 1976/80) and "femininity testing" (1976 to 2000) (« contrôle de sexe » and « contrôle de féminité » in French) shows that biological data are not the only things that are being evaluated. Cold War: sport and gender control = confrontation surrounding sex (even if this did not systematically exist prior to the Cold War). The new "other" since 1990 = racialized women from the continents of Africa or Asia. Problem with the dialogue around fair competition = this is a goal that is not achievable anyway, but it is mobilized for the purpose of excluding certain populations.</td>
</tr>
<tr>
<td>Westbrook, L.</td>
<td>2016</td>
<td>Theoretical article</td>
<td>Non-binary (they)</td>
<td>An article that attempts to trace the history of the terminology used to refer to trans people. Also attempts to think about trans people in relation to categories of sexuality. Trans people are thought of almost exclusively through the prism of gender subversion. This approach is flawed, it obscures the social relation of the sexes and the consequences of this on the lived experiences of trans people.</td>
</tr>
</tbody>
</table>
The article highlights, without any real source or justification, both the beginning of the use of the term *transsexual*, pinpointing the first case of its usage in 1952, as well as the case of Christine Jorgensen. The conclusions drawn not only seem precarious, they also underline the cis-centrism of the article. What is presented is a cis interpretation of the terms that are used by cis people to refer to trans people (but without making this point of view explicit, of course).

The article takes an essentialist view of sex and gender by making a distinction between the term *transsexual* (defined as the act of changing one’s biological sex) and transgender (defined as the act of changing one’s gender). However, if the sex of an individual is determined by their gender, we can easily say that a person has changed their sex (or gender) regardless of the type of transition (whether it be social, medical, institutional) that has taken place.

The author discusses the fact that the only word currently used to describe being attracted to trans people would be the slur *tranny chaser*. She goes on to propose potentially less offensive terms without taking into consideration the power dynamics that come into play in the fetishization of trans people by cis people. She even goes so far as to propose a new meaning for the word *transsexual*, suggesting that this term could be used to refer to individuals who are attracted to trans people. In proposing a new meaning for this term, the author is furthering the cis appropriation of terms relating to the trans experience. A portion of the trans population has already reclaimed this word.

Pape, M. (2020)

Qualitative semi-structured interviews n=62, with athletes, coaches, staff members, managers, officials, and federation representatives, media professionals, academics and activists between 2009 and 2016 = inclusion criterion: involved to any degree in the 2012 London Olympics.

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Disinformation</td>
<td>Most athletes were in favour of the IAAF rules. But most of them did not really know much about what the stipulations laid out in the rules consisted of. The majority think that this is an ethical issue and not a scientific debate. Many did not know the history of the femininity test (one person proposed - without knowing that one had already proposed - that the term transsexual should be used for individuals who are attracted to trans people). This article allows us to examine the process of ignorance observed in members of the sports movement in cases that involve athletes with an endogenous testosterone level that is higher than the average level for women. The failure to inform oneself, to avoid confronting certain information, to question the actions of the federation, and to train/educate people about the discrimination experienced by these athletes is socially situated. Although the author accurately shows the three types of ignorance at play, the social positions of the different surveys could have been better taken into consideration, in particular, it would have been helpful to look at how the different power dynamics have an impact (notably where race, gender, class and nationality are concerned).</td>
</tr>
</tbody>
</table>

| 2 | Ignorance as an active process whereby it would have been possible to find out about a particular topic but where this knowledge has not been sought out or obtained. The 3 types of ignorance: | |

| 3 | Men at the elite level in athletics have hormone levels that are equivalent to the average hormone levels seen in women. | No |
extent in the implementation of the testosterone regulations in the female category.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>been done and without knowing the problems posed - to carry out a chromosomal test). There was a lot of confusion about the terms used in the debate such as the term "hermaphrodite." Some athletes were referred to as men. Pathologizing intersex athletes. 2. Ideology The formulation of the regulations = an enclosed and private space for the construction of knowledge. Preconceived ideas about the issue being discussed affect how the regulations are established in the first place. Most respondents strongly believe that testosterone levels have an impact on the differences in athletic performance. Many were incredulous and were surprised that the CAS suspended the regulation in 2015 due to a lack of scientific evidence. Confusion between endogenous and exogenous testosterone. Some chose to ignore the glaring lack of scientific evidence and were instead guided by their beliefs/stereotypes. This was particularly true for those in charge of formulating the regulations. 3. Avoidance Some federation workers who were contacted for an interview said that this was not their area of expertise and referred the interviewer to the federation’s physicians. An official who tried to get more information and came up with evidence that the rules were not working at the IAAF was removed. No questioning of the rules; coaches placed their trust in the IAAF. Fear of backlash if the rules are challenged. Silence also forms part of the social position; some people have benefitted from the fact that the regulations remain in place, even though their underpinning is not scientifically correct. The federations were involved in maintaining the silence of the athletes. Some advised the athletes just to answer that the 800m did not concern them. Even though cases involving trans athletes are not mentioned, it can be observed that these mechanisms are also at work in such cases.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix B: Scoping Review Yield

Figure 2 Summary of scoping review yield from June 2021.

<table>
<thead>
<tr>
<th>#</th>
<th>Editor</th>
<th>Database</th>
<th>Types</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Elsevier</td>
<td>Embase</td>
<td>Biomedical Sciences</td>
<td>96</td>
</tr>
<tr>
<td>2.</td>
<td>OVID</td>
<td>Medline</td>
<td>Biomedical Sciences</td>
<td>263</td>
</tr>
<tr>
<td>3.</td>
<td>ProQuest</td>
<td>PAIS International</td>
<td>Public Affairs</td>
<td>16</td>
</tr>
<tr>
<td>4.</td>
<td>OVID</td>
<td>PsycINFO</td>
<td>Psychology</td>
<td>193</td>
</tr>
<tr>
<td>5.</td>
<td>ProQuest</td>
<td>Sociological Abstracts & Social Services Abstracts</td>
<td>Social Sciences</td>
<td>121</td>
</tr>
<tr>
<td>6.</td>
<td>ProQuest</td>
<td>Sport Medicine & Education Index</td>
<td>Sport Science</td>
<td>169</td>
</tr>
<tr>
<td>7.</td>
<td>EBSCO</td>
<td>SportDiscus</td>
<td>Sport Science</td>
<td>328</td>
</tr>
<tr>
<td>8.</td>
<td>CLARIVATE</td>
<td>Web of Science, Core Collection</td>
<td>Multidisciplinary</td>
<td>342</td>
</tr>
<tr>
<td>9.</td>
<td>EBSCO</td>
<td>Women’s Studies International</td>
<td>Women</td>
<td>49</td>
</tr>
<tr>
<td>10.</td>
<td>ProQuest</td>
<td>Worldwide Political Science Abstracts</td>
<td>Political Science</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TOTAL</td>
<td>1697</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Duplicates</td>
<td>703</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Primary</td>
<td>994</td>
</tr>
</tbody>
</table>
Appendix C: List of Some Canadian Organizations Who Have Trans Inclusion Policies at Competitive/Elite Levels

These Canadian sport organizations’ policies take different approaches to including trans women, some choosing to focus on accepting all athletes’ embodied strengths to be celebrated, including trans women’s, without restrictions, and others taking a narrower approach to defining what kinds of embodiments are permissible.

- Archery Canada
- Biathlon Canada
- Bowling Federation of Canada
- Bowls Canada
- Canada Basketball
- Canadian Powerlifting Union
- Canoe Kayak Canada
- Climbing Canada
- Cycling Canada
- Field Hockey Canada
- Lacrosse Canada
- Quidditch Canada
- Ringette Canada
- Rowing Canada
- Rugby Canada
- Skate Canada
- Softball Canada
- Ultimate Canada
- Volleyball Canada
- Water Polo Canada
- Wheelchair Basketball Canada
- Wheelchair Rugby Canada